Retinitis pigmentosa (RP) is a group of inherited diseases that cause blindness due to the progressive death of rod and cone photoreceptors in the retina. There are currently no effective treatments for RP. Inherited mutations in rhodopsin, the light-sensing protein of rod photoreceptor cells, are the most common cause of autosomal-dominant RP. The majority of mutations in rhodopsin, including the common P23H substitution, lead to protein misfolding, which is a feature in many neurodegenerative disorders. Previous studies have shown that upregulating molecular chaperone expression can delay disease progression in models of neurodegeneration. Here, we have explored the potential of the heat-shock protein co-inducer arimoclomol to ameliorate rhodopsin RP. In a cell model of P23H rod opsin RP, arimoclomol reduced P23H rod opsin aggregation and improved viability of mutant rhodopsin-expressing cells. In P23H rhodopsin transgenic rat models, pharmacological potentiation of the stress response with arimoclomol improved electroretinogram responses and prolonged photoreceptor survival, as assessed by measuring outer nuclear layer thickness in the retina. Furthermore, treated animal retinae showed improved photoreceptor outer segment structure and reduced rhodopsin aggregation compared with vehicle-treated controls. The heat-shock response (HSR) was activated in P23H retinae, and this was enhanced with arimoclomol treatment. Furthermore, the unfolded protein response (UPR), which is induced in P23H transgenic rats, was also enhanced in the retinae of arimoclomol-treated animals, suggesting that arimoclomol can potentiate the UPR as well as the HSR. These data suggest that pharmacological enhancement of cellular stress responses may be a potential treatment for rhodopsin RP and that arimoclomol could benefit diseases where ER stress is a factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047904 | PMC |
http://dx.doi.org/10.1038/cddis.2014.214 | DOI Listing |
Anim Sci J
January 2025
Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
Heat stress negatively affects the reproductive function of in animals and humans. Although a relationship between heat and oxidative stress has been suggested, the underlying mechanism has not been sufficiently examined in reproduction-related cells. Therefore, we aimed to investigate whether heat stress induces oxidative stress using a variety of reproduction-related cells including bovine placental and cumulus-granulosa cells, human cell lines derived from cervical and endometrial cancers, and fibroblasts derived from endometrium.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Biosciences, College of Life & Environmental Sciences, University of Exeter, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.
Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.
View Article and Find Full Text PDFInsects
January 2025
Zoological Institute, Russian Academy of Sciences, Universitetskaya 1, 199034 St. Petersburg, Russia.
Insect diapause and response to thermal stress are similar in the variety of manifestations. However, the influence of thermal shocks on the incidence of insect diapause has not been sufficiently studied. Our laboratory experiments showed that both cold (-10 °C) and heat (43 °C) shocks experienced for at least 20-30 min significantly reduced the incidence of facultative larval winter diapause in the insect egg parasitoid .
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Long non-coding RNAs (lncRNAs) are emerging as critical regulators in honeybee physiology, influencing development, behavior, and stress responses. This study investigates the role of lncRNA LOC113219358 in the immune response and neurophysiological regulation of brains. Using RNA interference (RNAi) and RNA sequencing (RNA-seq), we demonstrate that silencing lncLOC113219358 significantly alters the expression of 162 mRNA transcripts, including genes associated with detoxification, energy metabolism, and neuronal signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!