Copper is a trace element required to maintain essential life processes. In healthy organisms, copper metabolism is well balanced. If this balance is destroyed, the cellular level of free copper might increase and cause toxic effects. So far, the molecular mechanisms of copper intoxication are understood only partly. The present study revealed that the kinesin-dependent transport system is strongly affected by copper(II) ions. Both the microtubules, along which kinesin moves, and the kinesin itself were found to be the target structures of copper ions: Microtubule formation was suppressed by copper ions (IC50 26-70 µM) apparently chiefly by inhibition of binding of microtubule-associated proteins to tubulin. This inhibition could be widely compensated by the microtubule-stabilising agent paclitaxel. In addition, copper ions strongly inhibited the ATPase activity of neuron-specific kinesin KIF5A. At final KIF5A concentration of 112 nM, an IC50 of 1.3 µM was determined. Correspondingly, the motility activity of KIF5A, measured as velocity of microtubules gliding across a kinesin-covered surface, was blocked. The effects of copper ions on microtubules and on KIF5A are suggested to contribute to impaired transport processes within brain and other organs in cases of copper ion surplus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-014-1272-0 | DOI Listing |
Environ Res
January 2025
Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea. Electronic address:
Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions.
View Article and Find Full Text PDFMolecules
January 2025
Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!