Nano- and mesostructuring is widely used in thermoelectric (TE) materials. It introduces numerous interfaces and grain boundaries that scatter phonons and decrease thermal conductivity. A new approach has been developed for the rational design of the interfaces in TE materials by using all-inorganic nanocrystals (NCs) that serve as a "glue" for mesoscopic grains. For example, circa 10 nm Bi NCs capped with (N2H5)4Sb2Te7 chalcogenidometallate ligands can be used as an additive to BiSbTe particles. During heat treatment, NCs fill up the voids between particles and act as a "glue", joining grains in hot-pressed pellets or solution-processed films. The chemical design of NC glue allowed the selective enhancement or decrease of the majority-carrier concentration near the grain boundaries, and thus resulted in doped or de-doped interfaces in granular TE material. Chemically engineered interfaces can be used as to optimize power factor and thermal conductivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201402026 | DOI Listing |
Sci Rep
January 2025
Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.
NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Rare-earth-doped all-inorganic perovskite applications for near-infrared (NIR) emission are crucial for the construction of the next generation of intelligent lighting sources. However, the preparation of rare-earth-doped all-inorganic perovskite is complex, and difficult to control, and the issue of thermal quenching poses significant challenges to its practical application. Here, in order to address these issues, a convenient photo-induced synthesis method for CsPbCl:Mn/Yb nanocrystals (NCs) is proposed by decomposing carbon tetrachloride with 365 nm light to provide chloride ions and regulate the formation of perovskite at room temperature.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China.
Recently, Mn-doped metal halide perovskites (MHPs) have been extensively studied as they can improve the photoluminescence quantum yield (PLQY) with minimal self-absorption. However, almost all of them with high efficiency are Pb/Cd-based toxic heavy metal perovskites, which seriously limits their commercial applications. To address the dual needs of high efficiency and environmental protection, this study proposes to incorporate Mn into the environmentally friendly perovskite CsEuX (X = Cl/Br), and further increases PLQY to 96.
View Article and Find Full Text PDFAll-inorganic lead halide perovskite nanocrystals (NCs) have excellent optoelectronic properties and promising applications. Improving the stability of inorganic halide NCs and optimizing their photoluminescence quantum yields (PLQY) has become an urgent task. Constructing core-shell structures is an effective method to improve the environmental stability and PLQY, however, realizing core-shell structured perovskite NCs with good dispersion and multiple perovskites encapsulated within the shell material remains challenging.
View Article and Find Full Text PDFWhen exposed to light, the colloidal perovskite nanoplatelets (NPLs) in the film can fuse into larger grains, and this phenomenon was thought to be closely related to ion migration. However, the available CsPbBr NPLs are not conducive to directly distinguishing this hypothesis. Herein, we prepare mixed-halide perovskite CsPbBrI NPLs by a ligand-assisted reprecipitation method and investigate the photoluminescence evolution of NPLs under laser irradiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!