Based on the original combination of picosecond acoustics and diamond anvils cell, recent improvements to accurately measure hypersonic sound velocities of liquids and solids under extreme conditions are described. To illustrate the capability of this technique, results are given on the pressure and temperature dependence of acoustic properties for three prototypical cases: polycrystal (iron), single-crystal (silicon) and liquid (mercury) samples. It is shown that such technique also enables the determination of the density as a function of pressure for liquids, of the complete set of elastic constants for single crystals, and of the melting curve for any kind of material. High pressure ultrafast acoustic spectroscopy technique clearly opens opportunities to measure thermodynamical properties under previously unattainable extreme conditions. Beyond physics, this state-of-the-art experiment would thus be useful in many other fields such as nonlinear acoustics, oceanography, petrology, in of view. A brief description of new developments and future directions of works conclude the article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2014.04.011 | DOI Listing |
Small
January 2025
Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznan, 61-614, Poland.
The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.
View Article and Find Full Text PDFPhotoacoustics
February 2025
Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom.
In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time.
View Article and Find Full Text PDFStruct Dyn
November 2024
Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden.
Light-matter interaction at the nanoscale in magnetic alloys and heterostructures is a topic of intense research in view of potential applications in high-density magnetic recording. While the element-specific dynamics of electron spins is directly accessible to resonant x-ray pulses with femtosecond time structure, the possible element-specific atomic motion remains largely unexplored. We use ultrafast electron diffraction (UED) to probe the temporal evolution of lattice Bragg peaks of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse.
View Article and Find Full Text PDFJ Phys Chem A
September 2024
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The electronic relaxation dynamics of gold monolayer protected clusters (MPCs) are influenced by the hydrocarbon structure of thiolate protecting ligands. Here, we present ligand-dependent electronic relaxation for a series of Au(SR) (SR = SCH, SCH, SCH) MPCs using femtosecond time-resolved transient absorption spectroscopy. Relaxation pathways included a ligand-independent femtosecond internal conversion and a competing ligand-dependent picosecond intersystem crossing process.
View Article and Find Full Text PDFNano Lett
August 2024
Department of Physics, University of Washington, Seattle, Washington 98195, United States.
MnBiTe is a magnetic topological insulator with layered A-type antiferromagnetic order. It exhibits a rich layer- and magnetic-state dependent topological phase diagram; however, much about the coupling between spin, charge, and lattice remains to be explored. In this work, we report that MnBiTe is an excellent acoustic phonon cavity by realizing phonon frequency combs using picosecond ultrasonics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!