Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism.

Plant Biotechnol J

Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain; Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.

Published: September 2014

Small peptides play important roles in the signalling cascades that steer plant growth, development and defence, and often crosstalk with hormonal signalling. Thereby, they also modulate metabolism, including the production of bioactive molecules that are of high interest for human applications. Yew species (Taxus spp.) produce diterpenes such as the powerful anticancer agent paclitaxel, the biosynthesis of which can be stimulated by the hormone jasmonate, both in whole plants and cell suspension cultures. Here, we identified Taximin, as a gene encoding a hitherto unreported, plant-specific, small, cysteine-rich signalling peptide, through a transcriptome survey of jasmonate-elicited T. baccata suspension cells grown in two-media cultures. Taximin expression increased in a coordinated manner with that of paclitaxel biosynthesis genes. Tagged Taximin peptides were shown to enter the secretory system and localize to the plasma membrane. In agreement with this, the exogenous application of synthetic Taximin peptide variants could transiently modulate the biosynthesis of taxanes in T. baccata cell suspension cultures. Importantly, the Taximin peptide is widely conserved in the higher plant kingdom with a high degree of sequence conservation. Accordingly, Taximin overexpression could stimulate the production of nicotinic alkaloids in Nicotiana tabacum hairy root cultures in a synergistic manner with jasmonates. In contrast, no pronounced effects of Taximin overexpression on the specialized metabolism in Medicago truncatula roots were observed. This study increases our understanding of the regulation of Taxus diterpene biosynthesis in particular and plant metabolism in general. Ultimately, Taximin might increase the practical potential of metabolic engineering of medicinal plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pbi.12205DOI Listing

Publication Analysis

Top Keywords

taximin
9
paclitaxel biosynthesis
8
cell suspension
8
suspension cultures
8
taximin peptide
8
taximin overexpression
8
taximin conserved
4
conserved plant-specific
4
peptide
4
plant-specific peptide
4

Similar Publications

Overexpression of the Arabidopsis thaliana signalling peptide TAXIMIN1 affects lateral organ development.

J Exp Bot

August 2015

Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium.

Lateral organ boundary formation is highly regulated by transcription factors and hormones such as auxins and brassinosteroids. However, in contrast to many other developmental processes in plants, no role for signalling peptides in the regulation of this process has been reported yet. The first characterization of the secreted cysteine-rich TAXIMIN (TAX) signalling peptides in Arabidopsis is presented here.

View Article and Find Full Text PDF

Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism.

Plant Biotechnol J

September 2014

Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain; Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.

Small peptides play important roles in the signalling cascades that steer plant growth, development and defence, and often crosstalk with hormonal signalling. Thereby, they also modulate metabolism, including the production of bioactive molecules that are of high interest for human applications. Yew species (Taxus spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!