Human biospecimens represent invaluable resources to advance molecular medicine, epidemiology, and biomarker discovery/validation, among other biomedical research. Biobanks typically cryopreserve biospecimens to safeguard their biochemical composition. However, exposing specimens repeatedly to freeze/thaw cycles can degrade their integrity in unforeseen ways. Those biobanks storing liquid samples, thus, regularly make a fundamental compromise at collection time between freezing samples in many small volumes (e.g., 0.5 mL or smaller) or in fewer, larger volumes (e.g., 1.8 mL). The former eliminates the need to expose samples to repeated freeze/thaw cycling, although increasing up-front labor costs, consumables used, and cold storage space requirements. The latter decreases up-front labor costs, consumables, and cold storage requirements, yet exposes samples repeatedly to damaging freeze/thaw cycles when smaller aliquots are needed for analysis. The Rhode Island BioBank at Brown University (RIBB) thoroughly evaluated the performance of an original technology that minimizes a sample's exposure to freeze/thaw cycling by enabling the automated extraction of frozen aliquots from one single frozen parent sample without thawing it. A technology that eliminates unnecessary sample exposures to freeze/thaw cycles could help protect sample integrity, extend its useful life, and effectively rectify and eliminate the aforementioned need to compromise. This report presents the results of the evaluation, and conclusively demonstrates the technology's ability to extract multiple uniform frozen aliquots from a single cryotube of never-thawed frozen human plasma, which faithfully represent the parent sample when analyzed for typical biochemical analytes, showing a coefficient of variability lower than 5.5%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077011PMC
http://dx.doi.org/10.1089/bio.2012.0049DOI Listing

Publication Analysis

Top Keywords

freeze/thaw cycles
12
frozen parent
8
freeze/thaw cycling
8
up-front labor
8
labor costs
8
costs consumables
8
consumables cold
8
cold storage
8
frozen aliquots
8
aliquots single
8

Similar Publications

Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

Inorganic substrates in frozen solutions: Transformation mechanisms and interactions with organic compounds - A review.

Water Res

December 2024

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China. Electronic address:

In cold environments, such as polar regions and high latitudes, the freezing of aqueous solutions plays a crucial role in releasing and transforming nutrients, organic compounds, and trace gases. Freezing processes typically affect biogeochemical cycles and environmental processes by reducing the rate of chemical reactions. However, substantial studies have found that some chemical reactions may accelerate unexpectedly under freezing conditions.

View Article and Find Full Text PDF

Macro-Micro Properties of Remodeled Waste Slurry Under Freeze-Thaw Cycles.

Materials (Basel)

January 2025

School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, Tianjin 300401, China.

Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze-thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze-thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze-thaw cycles.

View Article and Find Full Text PDF

Defects can be introduced into shotcrete materials after a few freeze-thaw cycles, which has a significant influence on the fracture performance of shotcrete. In this study, a series of shotcrete specimens with varying sizes, geometries, and initial crack lengths were prepared to investigate the fracture properties of notched shotcrete under freeze-thaw conditions. Considering the effects of specimen boundaries and material microstructure, a linear closed-form solution was proposed to determine the fracture toughness of frost-damaged shotcrete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!