Genotoxic effects of water from São Francisco River, Brazil, in Astyanax paranae.

Bull Environ Contam Toxicol

Center of Biological Sciences and Health, College of Biological Sciences, State University of West of Paraná, Rua Universitária, 2069, Cascavel, Paraná, CEP 85819-110, Brazil.

Published: September 2014

Aquatic monitoring is an important tool for identifying potential compounds in rivers that may damage the environment. Here, we evaluate the potential genotoxic effects of water samples from São Francisco River (Brazil) using the micronuclei (MN) assay in resident species, Astyanax paranae. Four seasonal collections occurred between the years 2009 and 2010, at three locations between two nearby cities in the region. It was clearly observed an increase of MN frequency in fish caught in the river. This result is most likely due to the sewage contamination from the treatment plant, the waste pesticides from crops and the lack of riparian vegetation along the river, especially during the winter when there was a significant increase in the frequencies of MN. These results indicate that compounds in waters from São Francisco River may have genotoxic effects and consequently, cause damage to the environment as well as to human health.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-014-1291-9DOI Listing

Publication Analysis

Top Keywords

genotoxic effects
12
são francisco
12
francisco river
12
effects water
8
river brazil
8
astyanax paranae
8
damage environment
8
river
5
water são
4
brazil astyanax
4

Similar Publications

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Wintering loons in South Korea face an ongoing threat from polycyclic aromatic hydrocarbons: Shifting sources and potential DNA damage.

Environ Pollut

January 2025

Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.

View Article and Find Full Text PDF

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E).

Toxicol Ind Health

January 2025

Cincinnati, OH, USA.

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E) (CASRN 1256353-26-0) is a volatile liquid proposed for use as a new low global-warming potential dielectric fluid in cooling applications. Workplace exposures are expected to be by inhalation exposure. The substance has low acute inhalation toxicity as indicated by a 4-h inhalation LC value of approximately 8000 ppm.

View Article and Find Full Text PDF

Microplastics in commercial marine bivalves: Abundance, characterization and main effects of single and combined exposure.

Aquat Toxicol

December 2024

Department of Life Sciences, Marine Resources, Conservation and Technology, CFE-Centre for Functional Ecology: Science for People & Planet, University of Coimbra, Coimbra 3000-456, Portugal; Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal.

Microplastics (MPs) are persistent and ubiquitous pollutants in marine ecosystems, and they can be ingested and accumulated by marine organisms with economic value to humans, such as marine bivalves, which may pose a threat to the marine food chains and to human health. In this literature review, we summarized the recent findings on the abundance and main characteristics (shape, size, color, polymer) of MPs detected in valuable marine bivalve species. Furthermore, we surveyed the major impacts triggered by MP exposure, alone or in combination with other pollutants, in these organisms.

View Article and Find Full Text PDF

Toxicity assessment of DMSO extracts of environmental aged beached plastics using human cell lines.

Ecotoxicol Environ Saf

January 2025

Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France. Electronic address:

Plastic products contain complex mixtures of chemical compounds that are incorporated into polymers to improve material properties. Besides the intentional chemical additives, other compounds including residual monomers and non-intentionnaly added substances (NIAS) as well as sorbed pollutants are usually also present in aged plastic. Since most of these substances are only loosely bound to the polymer via non-covalently interactions, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!