AI Article Synopsis

  • Bifonazole, an antifungal medication, was studied for its effects on calcium levels and viability in PC3 human prostate cancer cells, revealing a concentration-dependent increase in intracellular calcium levels ([Ca(2+)]i).
  • The increase in [Ca(2+)]i was significantly reduced by removing extracellular calcium, indicating calcium influx is involved, and was inhibited by a protein kinase C inhibitor, suggesting a specific signaling pathway.
  • Treatment with bifonazole also led to decreased cell viability and apoptosis at higher concentrations, indicating potential anticancer effects through calcium signaling mechanisms.

Article Abstract

Bifonazole is an antifungal drug widely used for treating skin diseases. The effect of bifonazole on physiology of cancer cells is unclear. The effect of bifonazole on cytosolic free Ca(2+) concentrations ([Ca(2+)]i) and viability in PC3 human prostate cancer cells was explored. The Ca(2+)-sensitive fluorescent dye, fura-2, was applied to measure [Ca(2+)]i. Bifonazole at concentrations of 5-30 µM induced a [Ca(2+)]i rise in a concentration-dependent manner. The response was reduced by 50% by removing extracellular Ca(2+). Bifonazole-evoked [Ca(2+)]i rise was not altered by nifedipine, econazole, SK&F96365 and protein kinase C activator, but was inhibited by 75% by GF109203X, a protein kinase C inhibitor. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) nearly abolished bifonazole-evoked [Ca(2+)]i rise. Conversely, treatment with bifonazole abolished BHQ-evoked [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 abolished bifonazole-induced [Ca(2+)]i rise. At 30-100 µM, bifonazole decreased cell viability concentration-dependently, which was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N″,N'-tetraacetic acid/acetoxy methyl. Annexin V/propidium iodide staining data suggest that bifonazole (30-100 µM) induced apoptosis concentration-dependently. Together, in PC3 human prostate cancer cells, bifonazole induced [Ca(2+)]i rises by inducing phospholipase C- and protein kinase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via non-store-operated pathways. Bifonazole induced cell death that might involve apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10799893.2014.921201DOI Listing

Publication Analysis

Top Keywords

[ca2+]i rise
20
cancer cells
16
pc3 human
12
human prostate
12
prostate cancer
12
protein kinase
12
[ca2+]i
9
bifonazole
9
bifonazole-induced [ca2+]i
8
[ca2+]i rises
8

Similar Publications

Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.

Life Metab

February 2025

New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.

Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.

View Article and Find Full Text PDF

The big potassium (BK) channels remain open with a small limiting probability of ~ 10 at minimal Ca and negative voltages < -100 mV. The molecular origin and functional significance of such "intrinsic opening" are not understood. Here we combine atomistic simulations and electrophysiological experiments to show that the intrinsic opening of BK channels is an inherent property of the vapor barrier, generated by hydrophobic dewetting of the BK inner pore in the deactivated state.

View Article and Find Full Text PDF

Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Prebiotics as modulators of colonic calcium and magnesium uptake.

Acta Physiol (Oxf)

February 2025

Institute for Molecular Medicine, Health and Medical University Potsdam, Potsdam, Germany.

Ca and Mg are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca and Mg can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca and Mg from supplements is significantly lower than that from milk products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!