Transcranial alternating current stimulation (tACS) is used in clinical applications and basic neuroscience research. Although its behavioral effects are evident from prior reports, current understanding of the mechanisms that underlie these effects is limited. We used motion perception, a percept with relatively well known properties and underlying neural mechanisms to investigate tACS mechanisms. Healthy human volunteers showed a surprising improvement in motion sensitivity when visual stimuli were paired with 10 Hz tACS. In addition, tACS reduced the motion-after effect, and this reduction was correlated with the improvement in motion sensitivity. Electrical stimulation had no consistent effect when applied before presenting a visual stimulus or during recovery from motion adaptation. Together, these findings suggest that perceptual effects of tACS result from an attenuation of adaptation. Important consequences for the practical use of tACS follow from our work. First, because this mechanism interferes only with adaptation, this suggests that tACS can be targeted at subsets of neurons (by adapting them), even when the applied currents spread widely throughout the brain. Second, by interfering with adaptation, this mechanism provides a means by which electrical stimulation can generate behavioral effects that outlast the stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028503 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5248-13.2014 | DOI Listing |
Int J Geriatr Psychiatry
January 2025
Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.
View Article and Find Full Text PDFTranscranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Psychosomatic Disease Consultation Center, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China. Electronic address:
Background: Transcranial alternating current stimulation (tACS) at 77.5 Hz and 15 mA, targeting the forehead and mastoid areas, has proven efficacious in patients with major depressive disorder (MDD) by simultaneously stimulating multiple brain nuclei and regions, many of which are critical for blood pressure regulation. This post hoc analysis aimed to assess the potential blood pressure-lowering effects of 77.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, 4229 Pearl Road, Suite N4-13, Cleveland, Ohio, 44109-1998, UNITED STATES.
Ipsilateral motor evoked potentials (iMEPs) are believed to represent cortically evoked excitability of uncrossed brainstem-mediated pathways. In the event of extensive injury to (crossed) corticospinal pathways, which can occur following a stroke, uncrossed ipsilateral pathways may serve as an alternate resource to support the recovery of the paretic limb. However, iMEPs, even in neurally intact people, can be small, infrequent, and noisy, so discerning them in stroke survivors is very challenging.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Institute of Cognitive Neuroscience, National Central University, Taiwan.
Previous research demonstrated that transcranial alternating current stimulation (tACS) can induce phosphene perception. However, tACS involves rhythmic changes in the electric field and alternating polarity (excitatory vs. inhibitory phases), leaving the precise mechanism behind phosphene perception unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!