A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A three-dimensional approach to pennation angle estimation for human skeletal muscle. | LitMetric

A three-dimensional approach to pennation angle estimation for human skeletal muscle.

Comput Methods Biomech Biomed Engin

a Department of Computer Science , University of Toronto, Toronto , Ontario , Canada.

Published: January 2016

Pennation angle (PA) is an important property of human skeletal muscle that plays a significant role in determining the force contribution of fascicles to skeletal movement. Two-dimensional (2D) ultrasonography is the most common approach to measure PA. However, in principle, it is challenging to infer knowledge of three-dimensional (3D) architecture from 2D assessment. Furthermore, architectural complexity and variation impose more difficulties on reliable and consistent quantification of PA. Thus, the purpose of our study is to provide accurate insight into the correspondence between 2D assessment and the underlying 3D architecture. To this end, a 3D method was developed to directly quantify PA based on 3D architectural data that were acquired from cadaveric specimens through dissection and digitization. Those data were then assessed two-dimensionally by simulating ultrasound imaging. To achieve consistency over intermuscular variation, our proposed 3D method is based on the geometric analysis of fascicle attachment. Comparative results show a wide range of differences (1.1-47.1%) between 2D and 3D measurements. That is, ultrasound can under- or over-estimate PA, depending on the architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2014.917294DOI Listing

Publication Analysis

Top Keywords

pennation angle
8
human skeletal
8
skeletal muscle
8
three-dimensional approach
4
approach pennation
4
angle estimation
4
estimation human
4
muscle pennation
4
angle property
4
property human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!