AI Article Synopsis

  • PGC-1α and its variant NT-PGC-1α are key players in regulating energy metabolism and thermogenesis, crucial for maintaining body temperature and fat levels.
  • In mice lacking full-length PGC-1α, the variant NT-PGC-1α compensates during cold exposure and surprisingly helps reduce obesity even when subjected to a high-fat diet.
  • The study found that these mice displayed increased energy expenditure and fat oxidation, leading to lower fat storage and higher temperatures, showcasing the variant's protective role against diet-induced obesity.

Article Abstract

The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and its splice variant N terminal (NT)-PGC-1α regulate adaptive thermogenesis by transcriptional induction of thermogenic and mitochondrial genes involved in energy metabolism. We previously reported that full-length PGC-1α (FL-PGC-1α) is dispensable for cold-induced nonshivering thermogenesis in FL-PGC-1α(-/-) mice, since a slightly shorter but functionally equivalent form of NT-PGC-1α (NT-PGC-1α(254)) fully compensates for the loss of FL-PGC-1α in brown and white adipose tissue. In the current study, we challenged FL-PGC-1α(-/-) mice with a high-fat diet (HFD) to investigate the effects of diet-induced thermogenesis on HFD-induced obesity. Despite a large decrease in locomotor activity, FL-PGC-1α(-/-) mice exhibited the surprising ability to attenuate HFD-induced obesity. Reduced fat mass in FL-PGC-1α(-/-) mice was closely associated with an increase in body temperature, energy expenditure, and whole-body fatty acid oxidation (FAO). Mechanistically, FL-PGC-1α(-/-) brown adipose tissue had an increased capacity to oxidize fatty acids and dissipate energy as heat, in accordance with upregulation of thermogenic genes UCP1 and DIO2. Furthermore, augmented expression of FAO and lipolytic genes in FL-PGC-1α(-/-) white adipose tissue was highly correlated with decreased fat storage in adipose tissue. Collectively, our data highlight a protective effect of NT-PGC-1α on diet-induced obesity by enhancing diet-induced thermogenesis and FAO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207386PMC
http://dx.doi.org/10.2337/db13-1837DOI Listing

Publication Analysis

Top Keywords

adipose tissue
20
fl-pgc-1α-/- mice
16
diet-induced obesity
8
obesity enhancing
8
white adipose
8
diet-induced thermogenesis
8
hfd-induced obesity
8
fl-pgc-1α-/-
6
thermogenesis
5
adipose
5

Similar Publications

Changes in the lipid and carbohydrate metabolism, adipokines, and growth factors during the development of metabolic disorders were studied in three mouse models: C57BL/6 (alimentary obesity), db/db (leptin-resistant obesity), and NOD (diabetes mellitus) lines. In the group of alimentary obesity, moderate fatty infiltration of the liver and hypertrophy of the adipose tissue, hyperglycemia, and increased concentrations of adiponectin, transforming growth factor β1 (TGF-β1), leptin, and cholesterol were detected. In the group of leptin-resistant obesity, multiple pathological changes in tissues, severe hyperglycemia and hyperleptinemia, hyperinsulinemia, and reduced concentrations of triglycerides, adiponectin, myostatin, and TGF-β1 were detected.

View Article and Find Full Text PDF

This study tested whether combined ceftriaxone and adipose-derived mesenchymal stem cells (ADMSCs) would defend the spinal cord against acute spinal infection (ASI) in rodent. Adult-Male-SD rats were grouped into groups 1 (SC)/2 (ASI)/3 (ASI + ceftriaxone from days 2 to 28 after ASI induction)/4 (ASI + allogenic ADMSCs from day 2 for a total of 3 doses/3 consecutive intervals by intravenous injection)/5 (ASI + combined ceftriaxone and ADMSC) and spinal cord tissues were harvested by day 28. Circulatory levels of TNF-α/IL-6 at days 7 and 28, and these two parameters in spinal fluid at day 28 were lowest in group 1, highest in group 2, significantly lower in group 5 than in groups 3/4, and significantly lower in group 3 than in group 4 (all p < 0.

View Article and Find Full Text PDF

Background: Immune-mediated inflammatory diseases (IMIDs) are a group of chronic conditions characterized by dysregulated immune responses and persistent inflammation. Rheumatoid arthritis (RA), spondyloarthritis (SpA), and ulcerative colitis (UC) exemplify prominent IMIDs, each presenting unique challenges for their management, that impact patient's quality of life (QoL). Obesity, marked by persistent low-grade inflammation, influences the progression, response to treatment, and clinical management of patients with RA, SpA, and UC.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is an energy-consuming organ, and its functional dysregulation contributes to the development of metabolic diseases and obesity. BAT function is regulated by the sympathetic nervous system but declines with age, which is partly caused by reduced sympathetic nerve fibers innervating BAT. Thus far, the role of mesenchymal stromal/stem cells in age-related BAT dysfunction remains unknown.

View Article and Find Full Text PDF

In right-sided colon cancer surgery, lymph node dissection around the superior mesenteric artery is necessary but technically challenging. Here we introduce the concept of "outermost layer-oriented robotic surgery" to improve the safety, efficacy, and reproducibility of superior mesenteric artery nodal dissection. In this procedure, the thin, loose connective tissue layer between the autonomic nerve sheath of the superior mesenteric artery and adipose tissue bearing lymph nodes, termed "the outermost layer of the autonomic nerve," is dissected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!