U12-type introns are a rare class of introns in the genomes of diverse eukaryotes. In the human genome, they number over 700. A subset of these introns has been shown to be spliced at a slower rate compared to the major U2-type introns. This suggests a rate-limiting regulatory function for the minor spliceosome in the processing of transcripts containing U12-type introns. However, both the generality of slower splicing and the subsequent fate of partially processed pre-mRNAs remained unknown. Here, we present a global analysis of the nuclear retention of transcripts containing U12-type introns and provide evidence for the nuclear decay of such transcripts in human cells. Using SOLiD RNA sequencing technology, we find that, in normal cells, U12-type introns are on average 2-fold more retained than the surrounding U2-type introns. Furthermore, we find that knockdown of RRP41 and DIS3 subunits of the exosome stabilizes an overlapping set of U12-type introns. RRP41 knockdown leads to slower decay kinetics of U12-type introns and globally upregulates the retention of U12-type, but not U2-type, introns. Our results indicate that U12-type introns are spliced less efficiently and are targeted by the exosome. These characteristics support their role in the regulation of cellular mRNA levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066798PMC
http://dx.doi.org/10.1093/nar/gku391DOI Listing

Publication Analysis

Top Keywords

u12-type introns
32
introns
13
u2-type introns
12
u12-type
9
global analysis
8
analysis nuclear
8
processing transcripts
8
introns spliced
8
transcripts u12-type
8
nuclear processing
4

Similar Publications

Structural basis of 5' splice site recognition by the minor spliceosome.

Mol Cell

January 2025

European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France. Electronic address:

The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition.

View Article and Find Full Text PDF

Despite the fact that 0.5% of human introns are processed by the U11/U12 minor spliceosome, the latter influences gene expression across multiple cellular processes. The ZCRB1 protein is a recently described core component of the U12 mono-snRNP minor spliceosome, but its functional significance to minor splicing, gene regulation, and biological signaling cascades is poorly understood.

View Article and Find Full Text PDF

B-cell immune deficiency in twin sisters expands the phenotype of MOPDI.

Clin Genet

October 2024

Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement Sud-Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Bron, France.

Microcephalic osteodysplastic primordial dwarfism type I (MOPDI) is a very rare and severe autosomal recessive disorder characterized by marked intrauterine growth retardation, skeletal dysplasia, microcephaly and brain malformations. MOPDI is caused by biallelic mutations in RNU4ATAC, a non-coding gene involved in U12-type splicing of 1% of the introns in the genome, which are recognized by their specific splicing consensus sequences. Here, we describe a unique observation of immunodeficiency in twin sisters with mild MOPDI, who harbor a novel n.

View Article and Find Full Text PDF

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity.

View Article and Find Full Text PDF

Structural basis of U12-type intron engagement by the fully assembled human minor spliceosome.

Science

March 2024

Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China.

Article Synopsis
  • - The minor spliceosome is crucial for splicing U12-type introns and comprises five unique small nuclear RNAs (snRNAs), only one of which is shared with the major spliceosome.
  • - Researchers used cryo-electron microscopy to create a detailed structure of the human minor spliceosome pre-B complex, including essential components like U11, U12 snRNP, and the U4atac/U6atac.U5 tri-snRNP.
  • - The study reveals specific interactions between U11 snRNA and proteins, as well as unique characteristics that differentiate the minor tri-snRNP from the major tri-snRNPs during spliceosome assembly.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!