Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO₂ nanoparticles to benthic organisms.

Environ Toxicol Chem

National Health and Environmental Effects Research Laboratory, Office of Research and Development, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA.

Published: July 2014

Toxicity of titanium dioxide nanoparticles (nano-TiO2 ) to aquatic organisms can be greatly increased after exposure to ultraviolet (UV) radiation. This phenomenon has received some attention for water column species; however, investigations of nano-TiO2 phototoxicity for benthic organisms are still limited. In the present study, bioassays of 3 representative benthic organisms (Hyalella azteca, Lumbriculus variegatus, and Chironomus dilutus) were conducted to evaluate nano-TiO2 phototoxicity. When exposed to 20 mg/L of nano-TiO2 and various light intensities (0-30 W/m(2)), H. azteca was the most sensitive, with a median lethal dose of 40.7 (95% confidence interval, 36.3-44.7) Wh/m(2), and hence is a potential model organism in future toxicological guidelines for photoactive nanomaterials to freshwater benthos. Without the presence of nano-TiO2 , no mortality was observed in L. variegatus and C. dilutus exposed to UV intensity ranging from 0 W/m(2) to 41 W/m(2). However, a sharp drop of H. azteca survival was observed when UV intensity was higher than 9.4 W/m(2), demonstrating the importance of UV-only effects on the ultimate phototoxicity of nanomaterials. Furthermore, both bioavailability and surface attachment of nano-TiO2 onto organisms were affected by the exposure scenario, supported by the exposure scenario-dependent phototoxicity seen in H. azteca and C. dilutus. Overall, the present study demonstrates the importance of species sensitivity and exposure scenarios in future test guidelines of nano-phototoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.2583DOI Listing

Publication Analysis

Top Keywords

benthic organisms
12
species sensitivity
8
nano-tio2 phototoxicity
8
nano-tio2
6
exposure
5
phototoxicity
5
organisms
5
sensitivity dependence
4
dependence exposure
4
exposure conditions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!