Baicalein is a new drug that has shown promising anti-cancer effects against a broad spectrum of tumors. However, the potential effect on osteosarcoma cells and the mechanisms involved are still largely unknown. Resistance to chemotherapy remains a major obstacle in cancer therapy. Therefore, the aim of the present study was to investigate the anti-tumor effect of baicalein on human osteosarcoma cancer cells and the molecular mechanism involved, as well as identify possible mechanisms of drug resistance. Our results revealed that baicalein-induced apoptosis in osteosarcoma cells was via a mitochondrial pathway involving both caspase-dependent and independent mechanisms. Notably, baicalein treatment upregulated the expression of HSP70, which partially prevented human osteosarcoma cells from undergoing apoptosis. Moreover, it was revealed that HSP70 expression decreased the sensitivity of osteosarcoma cells to baicalein via activation of PI3K/AKT and MAPK/ERK pathways. These results suggest that targeting HSP70-mediated drug resistance, in combination with chemotherapy drugs, may provide novel therapeutic opportunities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10495-014-0995-y | DOI Listing |
Curr Issues Mol Biol
December 2024
Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on the human Osteosarcoma (OS) cells SAOS-2 and U2OS. Using cell-based biochemical assays, we found that cytotoxic doses of PD (100-200 µM) promote ROS production, deplete glutathione (GSH), and elevate levels of both total iron and intracellular malondialdehyde (MDA), which are key markers of ferroptosis.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
Spheroids, as three-dimensional (3D) cell aggregates, can be prepared using various methods, including hanging drops, microwells, microfluidics, magnetic manipulation, and bioreactors. However, current spheroid manufacturing techniques face challenges such as complex workflows, the need for specialized personnel, and poor batch reproducibility. In this study, we designed a support-free, 3D-printed microwell chip and developed a compatible low-cell-adhesion process.
View Article and Find Full Text PDFDiscov Med
January 2025
Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, 362000 Quanzhou, Fujian, China.
Background: High-mobility group box 1 () participates in the progression of osteosarcoma (OS) through the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Corylin, one of the active components of , has anti-oxidant, anti-inflammatory, and anti-tumor effects. This study investigates the association between corylin and , and their impact and mechanism of action on OS.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Global Research Institute of Pharmacy, Radaur, Yamuna Nagar, 135133, Haryana, India.
Background: The biological name of garlic is Allium sativum L., a familiar spice with various health benefits. These benefits are mainly attributable to the compound diversity of garlic, which includes saponins, polysaccharides, organic sulfides, and phenolic compounds.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China.
Introduction: Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!