Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report the characterization of three-dimensional membrane waves for migrating single and collective cells and describe their propagation using wide-field optical profiling technique with nanometer resolution. We reveal the existence of small and large membrane waves the amplitudes of which are in the range of ∼ 3-7 nm to ∼ 16-25 nm respectively, through the cell. For migrating single-cells, the amplitude of these waves is about 30 nm near the cell edge. Two or more different directions of propagation of the membrane nanowaves inside the same cell can be observed. After increasing the migration velocity by BMP-2 treatment, only one wave direction of propagation exists with an increase in the average amplitude (more than 80 nm near the cell edge). Furthermore for collective-cell migration, these membrane nanowaves are attenuated on the leader cells and poor transmission of these nanowaves to follower cells was observed. After BMP-2 treatment, the membrane nanowaves are transmitted from the leader cell to several rows of follower cells. Surprisingly, the vast majority of the observed membrane nanowaves is shared between the adjacent cells. These results give a new view on how single and collective-cells modulate their motility. This work has significant implications for the therapeutic use of BMPs for the regeneration of skin tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028249 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097855 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!