Analysis of droplet contents is a key function involved in droplet-based microfluidic systems. Direct electrochemical detection of droplet contents suffers problems such as relatively poor repeatability, interference of capacitive current and relatively poor detectability. This paper presents a novel hybrid polydimethylsiloxane-glass chip for highly sensitive and reproducible amperometric detection of droplet contents. By wettability-patterning of the channel surface of the hybrid chip, water in oil droplets generated in the upstream part of the central channel can be switched to a two-phase vertical laminar flow (i.e., a continuous oil stream flowing atop a continuous aqueous stream) in the downstream part of the channel. The vertical laminar flow keeps the analyte in the underneath-flowing aqueous stream in direct contact with the sensing electrodes located on the bottom surface of the channel. Therefore, steady-state current signals with high sensitivity (1.2AM(-1)cm(-2) for H2O2), low limit of detection (0.12μM, S/N=2), and good reproducibility (RSD 1.1% at 0.3mM H2O2) were obtained. The methods for patterning of the inner channel surface are presented, and the behaviors of the microchip in flow profile switching and amperometric detection are discussed. The application of the developed microchip to enzyme kinetics study is also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2014.04.023DOI Listing

Publication Analysis

Top Keywords

droplet contents
16
vertical laminar
12
laminar flow
12
detection droplet
12
electrochemical detection
8
amperometric detection
8
channel surface
8
aqueous stream
8
detection
5
channel
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!