Electrical impedance tomography is an attractive functional imaging method. It is currently limited in resolution and sensitivity due to the complexity of the inverse problem and the safety limits of introducing current. Recently, internal electrodes have been proposed for some clinical situations such as intensive care or RF ablation. This paper addresses the research question related to the benefit of one or more internal electrodes usage since these are invasive. Internal electrodes would be able to reduce the effect of insulating boundaries such as fat and bone and provide improved internal sensitivity. We found there was a measurable benefit with increased numbers of internal electrodes in saline tanks of a cylindrical and complex shape with up to two insulating boundary gel layers modeling fat and muscle. The internal electrodes provide increased sensitivity to internal changes, thereby increasing the amplitude response and improving resolution. However, they also present an additional challenge of increasing sensitivity to position and modeling errors. In comparison with previous work that used point sources for the internal electrodes, we found that it is important to use a detailed mesh of the internal electrodes with these voxels assigned to the conductivity of the internal electrode and its associated holder. A study of different internal electrode materials found that it is optimal to use a conductivity similar to the background. In the tank with a complex shape, the additional internal electrodes provided more robustness in a ventilation model of the lungs via air filled balloons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0967-3334/35/6/1125 | DOI Listing |
Chempluschem
January 2025
Dmitry Mendeleev University of Chemical Technology of Russia, EMCPS Department, Miusskaya sq.9, 125047, Moscow, RUSSIAN FEDERATION.
Although microbial fuel cells (MFC) could be a promising energy source, their implementation is largely limited by low performance. There are several approaches to overcome this issue. For example, MFC performance can be enhanced using redox mediators (RM) capable of transferring electrons between microorganisms and MFC electrodes.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Switzerland.
Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.
Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.
Sci Rep
January 2025
Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan.
OHCA (out-of-hospital cardiac arrest) patients have improved neurological outcomes with public-access automated external defibrillator (PAD) use. However, the benefit of epinephrine administration after PAD use remains controversial. The purpose of the study was to investigate the impact of epinephrine administration on neurological outcomes in OHCA patients after PAD use.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
The spiral generator, based on the principle of the electric field vector inversion, is capable of delivering repetitive high-voltage nanosecond pulses in the commercial portable pulsed x-ray source and gas switch trigger source. However, the spiral generator suffers from extremely low output efficiency, which significantly affects the compactness and accelerates the insulation film breakdown at electrode foil edges since the high charging voltage is required. A novel output efficiency improvement method for the spiral generator was proposed, implementing the permalloy film inside the passive layer to optimize internal voltage wave propagation processes during the pulser erection.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, CHINA.
Suboptimal spatial utilization and inefficient access to internal porosity preclude porous carbon cathodes from delivering high energy density in zinc-ion hybrid capacitors (ZIHCs). Inspired by the function of capillaries in biological systems, this study proposes a facile coordination-pyrolysis method to fabricate thin-walled hollow carbon nanofibers (CNFs) with optimized pore structure and surface functional groups for ZHICs. The capillary-like CNFs maximize the electrode/electrolyte interface area, facilitating the optimal utilization of energy storage sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!