Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Some of the key factors affecting the adaptation of anaerobic digestion processes to increasing levels of salinity were determined in batch tests using brown seaweed as a feedstock. It was found that cultures seeded with non-saline anaerobic inoculum required an adaptation period of up to two months to reach the same level of methane production rate as in those cultures seeded with saline-adapted inoculum. The Anaerobic Digestion Model No.1 (ADM1) was modified to include an extra inhibition function to account for the effect of salinity, and calibrated using a set of experimental data obtained from batch biochemical methane potential tests. After calibration, the model was able to accurately predict methane production rates. Thus, the results show that, in the absence of saline-adapted inoculum, non-saline inoculum can be used for the start-up of anaerobic digestion systems treating saline-rich feedstocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2014.100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!