Insulin-dependent diabetes mellitus is one of the leading causes of death world-wide. Donor-derived pancreas and Islet of Langerhans transplantation are potential cures; however, postmortem ischemia impacts islet quality. The murine βt3 cell line was employed as a model to study cell viability and proliferation after hypothermic storage by comparing Belzer's Machine Perfusion Solution with Unisol™ Solution. The objective was to determine which of these solutions provided the best base line support for βt3 cells and to screen potential cytoprotective additives to the solutions. Initial βt3 cell viability was similar in the two storage solutions; however, better proliferation was observed after storage in Unisol Solution. The caspase inhibitor, Q-VD-OPH, and α-tocopherol improved viability in both storage solutions, suggesting that apoptotic pathways may be responsible for cell death during hypothermic storage of βt3 cells. Analysis of apoptosis markers, caspase activity, and DNA laddering showed a reduction in apoptosis when these additives were included. The effects of Q-VD-OPH and α-tocopherol were also synergistic when employed together during either hypothermic exposure, post-hypothermic physiologic incubation, or combinations of hypothermic exposure and physiologic incubation. These results suggest that both supplements should be included in pancreas hypothermic storage solutions and in islet culture media during post-isolation culture prior to transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077006 | PMC |
http://dx.doi.org/10.1089/bio.2012.0023 | DOI Listing |
Sci Rep
January 2025
Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.
View Article and Find Full Text PDFSci Rep
January 2025
Torrens University Australia, Fortitude Valley, QLD 4006, Leaders Institute, 76 Park Road, Woolloongabba, QLD 4102, Brisbane, Queensland, Australia.
Sci Rep
January 2025
School of Earth and Ocean Sciences, University of Victoria, PO Box 1700, Victoria, BC, V8W 2Y2, Canada.
Reaching net zero emissions and limiting global warming to 2 °C requires the widespread introduction of technology-based solutions to draw down existing atmospheric levels and future emissions of CO. One such approach is direct air CO capture and storage (DACCS), a readily available, yet energy-intensive process. The combination of DACCS and ocean thermal energy conversion (OTEC) allows for independently powered carbon capture plants to inject concentrated carbon into deep marine sediments where storage is generally safe and permanent.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Environmental Decisions, ETH Zürich, 8092, Zürich, Switzerland.
Growing demand for air travel and limited scalable solutions pose significant challenges to the mitigation of aviation's climate change impact. Direct air capture (DAC) may gain prominence due to its versatile applications for either carbon removal (direct air carbon capture and storage, DACCS) or synthetic fuel production (direct air carbon capture and utilization, DACCU). Through a comprehensive and time-dynamic techno-economic assessment, we explore the conditions for synthetic fuels from DACCU to become cost-competitive with an emit-and-remove strategy based on DACCS under 2050 CO and climate neutrality targets.
View Article and Find Full Text PDFLangmuir
January 2025
National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China.
To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!