Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents.

Angew Chem Int Ed Engl

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore (Singapore).

Published: June 2014

There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off-target immune-modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt-based chemotherapeutic agents to exploit their immune-activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal Pt(IV) prodrug containing a FPR1/2-targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201402879DOI Listing

Publication Analysis

Top Keywords

chemotherapeutic agents
8
immuno-chemotherapeutic platinumiv
4
platinumiv prodrugs
4
prodrugs cisplatin
4
cisplatin multimodal
4
multimodal anticancer
4
anticancer agents
4
agents growing
4
growing consensus
4
consensus clinical
4

Similar Publications

Bioactive hydrogel formulations for regeneration of pathological bone defects.

J Control Release

January 2025

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China. Electronic address:

Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remains a significant challenge for orthopedic surgeons. The precise local treatments to these pathological complications is essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner.

View Article and Find Full Text PDF

Advancing cancer therapy with custom-built alternating electric field devices.

Bioelectron Med

January 2025

School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.

Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.

View Article and Find Full Text PDF

Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) remains an obstacle for delivery of chemotherapeutic agents to gliomas. High grade and recurrent gliomas continue to portend a poor prognosis. Multiple methods of bypassing or manipulating the BBB have been explored, including hyperosmolar therapy, convection-enhanced delivery (CED), laser-guided interstitial thermal therapy (LITT), and Magnetic Resonance Guided Focused Ultrasound (MRgFUS) to enhance delivery of chemotherapeutic agents to glial neoplasms.

View Article and Find Full Text PDF
Article Synopsis
  • Colorectal cancer (CRC) is a major cause of cancer deaths, and oxaliplatin (OXA) is a primary treatment that faces challenges due to the tumor microenvironment (TME).
  • A new multifunctional nanosystem, Rg3-Lip-OXA/CaO, uses Ginsenoside Rg3 liposomes to target CRC cells, delivering OXA and calcium peroxide (CaO) together.
  • Research showed that this nanosystem had good stability and release properties, effectively targeted cancer cells, and significantly suppressed tumor growth in mice, while also showing manageable acute toxicity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!