The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3-30 μM), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3α-acetoxy-8,24-dienetirucallic acid (6) and 3α-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 μM, each. Structure-activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and -2 were hardly affected by the triterpene acids (IC50 > 10 μM). Given the crucial role of mPGES-1 in inflammation and the abundance of highly active triterpene acids in frankincence extracts, our findings provide further evidence of the anti-inflammatory potential of frankincense preparations and reveal novel, potent bioactivities of tirucallic acids, roburic acids, and lupeolic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074212PMC
http://dx.doi.org/10.1021/np500198gDOI Listing

Publication Analysis

Top Keywords

triterpene acids
20
acids
11
anti-inflammatory remedy
8
remedy frankincense
8
microsomal prostaglandin
8
boswellic acids
8
acids ic50
8
roburic acids
8
ic50 μm
8
mpges-1
6

Similar Publications

Background: Diabetes mellitus (DM) poses a major risk to human health due to an array of implications, one of which is a detrimental effect on the testicular and reproductive functions. Euphorbia heterophylla is widely recognized for its medicinal properties worldwide.

Methods And Findings: The objective of this study was to profile E.

View Article and Find Full Text PDF

Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.

View Article and Find Full Text PDF

Study on the Chemical Composition and Multidrug Resistance Reversal Activity of (Euphorbiaceae).

Int J Mol Sci

January 2025

Key Laboratory of Xinjiang Phytomedicine Resource and Uilization, Ministry of Education, Shihezi 832002, China.

belongs to the family Euphorbiaceae and is widely distributed in northern Xinjiang, making it a characteristic plant of the region in Xinjiang, China. The chemical composition and biological activity of have not yet been reported, although certain compounds isolated from plants in Xinjiang, China, have demonstrated exceptional multidrug resistance (MDR) reversal. This study aims to investigate the chemical components present in with the potential to reverse MDR.

View Article and Find Full Text PDF

Alzheimer's disease (AD) poses a significant public health issue. Despite the fact that today there are several methods of maintenance therapy, one of the most widely used methods is designed to correct the deficiency of acetylcholine. In the search for new potential inhibitors of cholinesterase enzymes, eight new derivatives of 3-oxo- or 2,3-indolo-triterpenic acid conjugated with amino-quinuclidine bicyclic cores were designed and synthesized.

View Article and Find Full Text PDF

Despite its important pharmacological bioactivities, betulinic acid is still primarily obtained through extraction from heartwood and bark or synthesized synthetically, with less than 3% efficiency. Our endemic rose species, Rosa pisiformis (Christ.) D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!