We report the fabrication of both n-type and p-type WSe2 field-effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e(2)/h, a high ON/OFF ratio of >10(7) at 170 K, and large electron and hole mobility of μ ≈ 200 cm(2) V(-1 )s(-1) at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ∼330 cm(2) V(-1) s(-1) and that of holes to ∼270 cm(2) V(-1) s(-1). We attribute our ability to observe the intrinsic, phonon-limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible, and transparent low-resistance ohmic contacts to a wide range of quasi-2D semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl501275p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!