Purpose: Fee-for-service (FFS) Medicare expenditures for advanced imaging studies (defined as computed tomography [CT], magnetic resonance imaging [MRI], positron emission tomography [PET] scans, and nuclear medicine studies [NM]) rapidly increased in the past two decades for patients with cancer. Imaging rates are unknown for patients with cancer, whether under or over age 65 years, in health maintenance organizations (HMOs), where incentives may differ.
Materials And Methods: Incident cases of breast, colorectal, lung, prostate, leukemia, and non-Hodgkin lymphoma (NHL) cancers diagnosed in 2003 and 2006 from four HMOs in the Cancer Research Network were used to determine 2-year overall mean imaging counts and average total imaging costs per HMO enrollee by cancer type for those under and over age 65.
Results: There were 44,446 incident cancer patient cases, with a median age of 75 (interquartile range, 71-81), and 454,029 imaging procedures were performed. The mean number of images per patient increased from 7.4 in 2003 to 12.9 in 2006. Rates of imaging were similar across age groups, with the exception of greater use of echocardiograms and NM studies in younger patients with breast cancer and greater use of PET among younger patients with lung cancer. Advanced imaging accounted for approximately 41% of all imaging, or approximately 85% of the $8.7 million in imaging expenditures. Costs were nearly $2,000 per HMO enrollee; costs for younger patients with NHL, leukemia, and lung cancer were nearly $1,000 more in 2003.
Conclusion: Rates of advanced imaging appear comparable among FFS and HMO participants of any age with these six cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094642 | PMC |
http://dx.doi.org/10.1200/JOP.2013.001258 | DOI Listing |
JACS Au
December 2024
Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China.
Metal ions, either essential or therapeutic, play critical roles in life processes or in the treatment of diseases. Proteins and enzymes are involved in metal homeostasis and the action of metallodrugs. Imaging and identifying these metal-binding proteins will facilitate the elucidation of metal-mediated life processes.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.
Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Department of Chemistry "G.Ciamician", University of Bologna, UE4, Via. P. Gobetti 85, 40129 Bologna, Italy.
Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Background: The aim of this study is to develop deep learning models based on F-fluorodeoxyglucose positron emission tomography/computed tomographic (F-FDG PET/CT) images for predicting individual epidermal growth factor receptor () mutation status in lung adenocarcinoma (LUAD).
Methods: We enrolled 430 patients with non-small-cell lung cancer from two institutions in this study. The advanced Inception V3 model to predict EGFR mutations based on PET/CT images and developed CT, PET, and PET + CT models was used.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!