Unlabelled: The measurement of volatile organic compound (VOC) emissions from building products and materials by manufacturers and testing laboratories, and the use of the test results for labeling programs, continue to expand. One issue that hinders wide acceptance for chamber product testing is the lack of a reference material to validate test chamber performance. To meet this need, the National Institute of Standards and Technology (NIST) and Virginia Tech (VT) have developed a prototype reference material that emits a single VOC similar to the emissions of a diffusion-controlled building product source with a dynamic emissions profile. The prototype material has undergone extensive testing at NIST and a pilot interlaboratory study (ILS) with four laboratories. The next development step is an evaluation of the prototype source in multiple-sized chambers of 14 laboratories in seven countries. Each laboratory was provided duplicate specimens and a test protocol. Study results identified significant issues related to the need to store the source at a subzero Celsius temperature until tested and possible inconsistencies in large chambers. For laboratories using a small chamber and meeting all the test method criteria, the results were very encouraging with relative standard deviations ranging from 5% to 10% across the laboratories.

Implications: Currently, the chamber performance of laboratories conducting product VOC emissions testing is assessed through interlaboratory studies (ILS) using a source with an unknown emission rate. As a result, laboratory proficiency can only be based on the mean and standard deviation of emission rates measured by the participating ILS laboratories. A reference material with a known emission rate has the potential to provide an independent assessment of laboratory performance as well as improve the quality of interlaboratory studies. Several international laboratories with different chamber testing systems demonstrated the ability to measure the emission rate of such a reference material within an acceptable measurement uncertainty.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2013.869274DOI Listing

Publication Analysis

Top Keywords

reference material
20
voc emissions
16
emission rate
12
emissions testing
8
interlaboratory study
8
chamber performance
8
ils laboratories
8
chambers laboratories
8
interlaboratory studies
8
laboratories
7

Similar Publications

Background/objectives: Evidence suggests nasal airflow resistance reduces after rapid maxillary expansion (RME). However, the medium-term effects of RME on upper airway (UA) airflow characteristics when normal craniofacial development is considered are still unclear. This retrospective cohort study used computer fluid dynamics (CFD) to evaluate the medium-term changes in the UA airflow (pressure and velocity) after RME in two distinct age-based cohorts.

View Article and Find Full Text PDF

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.

View Article and Find Full Text PDF

VASARI 2.0: a new updated MRI VASARI lexicon to predict grading and status in brain glioma.

Front Oncol

December 2024

NeuroRadiology Unit, Ospedale del Mare, Azienda Sanitaria Locale Napoli 1 Centro (ASL NA1 Centro), Naples, Italy.

Introduction: Precision medicine refers to managing brain tumors according to each patient's unique characteristics when it was realized that patients with the same type of tumor differ greatly in terms of survival, responsiveness to treatment, and toxicity of medication. Precision diagnostics can now be advanced through the establishment of imaging biomarkers, which necessitates quantitative image acquisition and processing. The VASARI (Visually AcceSAble Rembrandt Images) manual annotation methodology is an ideal and suitable way to determine the accurate association between genotype and imaging phenotype.

View Article and Find Full Text PDF

Discovering and utilizing the unique optoelectronic properties of transition metal dichalcogenides (TMDCs) is of great significance for developing next-generation electronic devices. In particular, research on Dirac state modulations of TMDCs under external strains is lacking. To fill this research gap, it has established a comprehensive database of 90 types of TMDCs and their response behaviors under external strains have been systematically investigated regarding the presence of Dirac cones and electronic structure evolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!