Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024559 | PMC |
http://dx.doi.org/10.4047/jap.2014.6.2.138 | DOI Listing |
Materials (Basel)
January 2025
Department of Biomedical Engineering, Iwate Medical University, Iwate 028-3694, Japan.
This study aimed to investigate the release of metallic ions from cobalt-chromium (Co-Cr) alloys fabricated by additive manufacturing (AM) for comparison with dental casting. Co-Cr alloys were fabricated via AM using selective laser melting (SLM) and electron beam melting (EBM) in powder-bed fusion. Polished and mechanically ground specimens were prepared.
View Article and Find Full Text PDFCureus
December 2024
Dentistry, Kurdistan Higher Council of Medical Specialties, Erbil, IRQ.
Introduction The utilization of Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technology in the production of polyetheretherketone (PEEK) and acetal frameworks enhances the precision and stability of partial denture frameworks. This study evaluates the retentive forces of CAD/CAM-fabricated PEEK, acetal, and cobalt-chromium (Co-Cr) frameworks in removable partial dentures (RPDs). Methods Forty-five frameworks were fabricated (15 each of PEEK, acetal, and Co-Cr) and tested for retentive forces using a universal testing machine at a crosshead speed of 5 mm/min.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Conservative Dentistry and Bucofacial Prostheses, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
Objectives: This study aimed to assess the vertical misfit at the implant-abutment interface in external and internal connections across various implant brands, comparing original milled titanium abutments with laser-sintered cobalt-chromium (Co-Cr) abutments.
Materials And Methods: A total of 160 implants from four different brands were utilized, with 80 featuring external connections (EC) and 80 internal connections (IC). Original milled titanium abutments (n = 160) and Co-Cr laser-sintered abutments (n = 160) were randomly attached to each connection type, following the manufacturer's recommended torque.
BMC Oral Health
January 2025
Department of Prosthodontics, Faculty of Dentistry, Recep Tayyip Erdoğan University, Rize, Turkey.
Background: Zygomatic implants are becoming an ideal treatment approach for implant-supported prosthesis treatment developed for the atrophic maxilla. This study aims to evaluate the amount and distribution of stress in implants and peri-implant bone using different implant-supported prosthesis configurations in Aramany Class I maxillary defects through 3-dimensional finite element analysis.
Methods: A 3-dimensional finite element model of the Aramany class I defect was created.
BMC Oral Health
January 2025
Department of Prosthodontics, Faculty of Dentistry, Hacettepe University, 06230, Sıhhiye/Altındağ, Ankara, Turkey.
Background: The mechanical properties of framework materials significantly influence stress distribution and the long-term success of implant-supported prostheses. Although titanium, cobalt-chromium, zirconia, and polyether ether ketone (PEEK) are widely used, their biomechanical performance under dynamic loading conditions remains insufficiently investigated. This study aimed to evaluate the biomechanical behavior of four framework materials with different Young's modulus using dynamic finite element stress analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!