Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci.

Elife

School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland

Published: April 2014

Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels.DOI: http://dx.doi.org/10.7554/eLife.02557.001.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017647PMC
http://dx.doi.org/10.7554/eLife.02557DOI Listing

Publication Analysis

Top Keywords

transcriptional activation
8
hox clusters
8
chromatin
5
temporal dynamics
4
dynamics developmental
4
developmental memory
4
memory chromatin
4
chromatin architecture
4
hox
4
architecture hox
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!