A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods. | LitMetric

Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods.

Med Decis Making

Division of Reproduction and Early Development, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK (HNC)

Published: August 2015

Background: Multiple embryo transfers in in vitro fertilization (IVF) treatment increase the number of successful pregnancies while elevating the risk of multiple gestations. IVF-associated multiple pregnancies exhibit significant financial, social, and medical implications. Clinicians need to decide the number of embryos to be transferred considering the tradeoff between successful outcomes and multiple pregnancies.

Objective: To predict implantation outcome of individual embryos in an IVF cycle with the aim of providing decision support on the number of embryos transferred.

Design: Retrospective cohort study.

Data Source: Electronic health records of one of the largest IVF clinics in Turkey. The study data set included 2453 embryos transferred at day 2 or day 3 after intracytoplasmic sperm injection (ICSI). Each embryo was represented with 18 clinical features and a class label, +1 or -1, indicating positive and negative implantation outcomes, respectively.

Methods: For each classifier tested, a model was developed using two-thirds of the data set, and prediction performance was evaluated on the remaining one-third of the samples using receiver operating characteristic (ROC) analysis. The training-testing procedure was repeated 10 times on randomly split (two-thirds to one-third) data. The relative predictive values of clinical input characteristics were assessed using information gain feature weighting and forward feature selection methods.

Results: The naïve Bayes model provided 80.4% accuracy, 63.7% sensitivity, and 17.6% false alarm rate in embryo-based implantation prediction. Multiple embryo implantations were predicted at a 63.8% sensitivity level. Predictions using the proposed model resulted in higher accuracy compared with expert judgment alone (on average, 75.7% and 60.1%, respectively).

Conclusions: A machine learning-based decision support system would be useful in improving the success rates of IVF treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0272989X14535984DOI Listing

Publication Analysis

Top Keywords

implantation outcome
8
vitro fertilization
8
multiple embryo
8
ivf treatment
8
number embryos
8
embryos transferred
8
decision support
8
data set
8
multiple
5
predictive modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!