A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facile synthesis of Rh-Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction. | LitMetric

Facile synthesis of Rh-Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction.

Nanoscale

State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.

Published: June 2014

In addition to activity, durability of Pd-based catalysts in a highly corrosive medium has become one of the most important barriers to limit their industrial applications such as low-temperature fuel cell technologies. Here, Rh with a unique capability to resist against oxidation etching was incorporated into Pd-based catalysts to enhance both their activity and durability for oxygen reduction reaction (ORR). This idea was achieved through the synthesis of the Rh-Pd alloy nanodendrites by co-reducing Rh and Pd salt precursors in oleylamine (OAm) containing cetyltrimethylammonium bromide (CTAB). In this synthesis, Rh-Pd alloy nanostructures with Rh-Pd atomic ratios from 19 : 1 to 1 : 4 were generated by varying the molar ratios of Rh and Pd salt precursors. Interestingly, this variation of the molar ratios of the precursors from Rh rich to Pd rich would lead to the shape evolution of Rh-Pd alloy from dendritic nanostructures to spherical aggregations. We found that Br(-) ions derived from CTAB were also indispensible to the production of Rh-Pd alloy nanodendrites. Owing to the addition of highly stable Rh as well as the radical structure with a large number of low-coordinated sites on the arms, Rh-Pd alloy nanodendrites with a Rh-Pd atomic ratio of 4 : 1 (Rh80Pd20) exhibited a substantially enhanced electrocatalytic performance towards ORR with a 5% loss of mass activity during the accelerated stability test for 10 000 cycles compared to ∼ 50% loss of the commercial Pt/C (E-TEK).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr06888aDOI Listing

Publication Analysis

Top Keywords

rh-pd alloy
24
alloy nanodendrites
16
synthesis rh-pd
12
rh-pd
8
oxygen reduction
8
reduction reaction
8
activity durability
8
pd-based catalysts
8
salt precursors
8
rh-pd atomic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!