(83)Kr nuclear magnetic moment in terms of that of (3)He.

Magn Reson Chem

Laboratory of NMR Spectroscopy, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warszawa, Poland.

Published: August 2014

AI Article Synopsis

  • High resolution NMR spectroscopy was utilized to accurately measure the nuclear magnetic dipole moment of (83)Kr, using new data on nuclear magnetic shielding in krypton and helium-3.
  • Small amounts of (3)He were mixed with (83)Kr as a buffer gas, and NMR spectra showed that resonance frequencies of both gases depended linearly on the density of the helium solvent.
  • By analyzing data from zero density of krypton and using the updated chemical shielding value, researchers achieved a highly precise determination of (83)Kr's nuclear magnetic moment, μ((83)Kr) = -0.9707297(32)μN.

Article Abstract

High resolution NMR spectroscopy was applied to precisely determine the (83)Kr nuclear magnetic dipole moment on the basis of new results available for nuclear magnetic shielding in krypton and helium-3 atoms. Small amounts of (3)He as the solutes and (83)Kr as the buffer gas were observed in (3)He and (83)Kr NMR spectra at the constant external field, B0 = 11.7578 T. In each case, the resonance frequencies (ν(He) and ν(Kr)) were linearly dependent on the density of gaseous solvent. The extrapolation of experimental points to the zero density of gaseous krypton allowed for the evaluation of both resonance frequencies free from intermolecular interactions. By combining these measurements with the recommended (83)Kr chemical shielding value, the nuclear magnetic moment could be determined with much better precision than ever before, μ((83)Kr) = -0.9707297(32)μN, with the improvement due to the greater accuracy of the spectral data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrc.4083DOI Listing

Publication Analysis

Top Keywords

nuclear magnetic
16
83kr nuclear
8
magnetic moment
8
resonance frequencies
8
density gaseous
8
83kr
5
magnetic
4
moment terms
4
terms 3he
4
3he high
4

Similar Publications

An MRI assessment of mechanisms underlying lesion growth and shrinkage in multiple sclerosis.

Ann Clin Transl Neurol

January 2025

NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.

Objective: To assess the pathological mechanisms contributing to white matter (WM) lesion expansion or contraction and remyelination in multiple sclerosis (MS).

Methods: We assessed 1,613 lesions in 49 people with relapsing-remitting MS in the CCMR-One bexarotene trial (EudraCT 2014-003145-99). We measured lesion orientation relative to WM tracts, surface-in gradients and veins.

View Article and Find Full Text PDF

Background: Risk factors and mechanisms of cognitive impairment (CI) after aneurysmal subarachnoid hemorrhage (aSAH) are unclear. This study used a neuropsychological battery, MRI, ERP and CSF and plasma biomarkers to predict long-term cognitive impairment after aSAH.

Materials And Methods: 214 patients hospitalized with aSAH (n = 125) or unruptured intracranial aneurysms (UIA) (n = 89) were included in this prospective cohort study.

View Article and Find Full Text PDF

A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.

View Article and Find Full Text PDF

Solvent influence on the optical absorption, frontier molecular orbitals, and electronic structure of 1-bromo adamantane.

J Mol Model

January 2025

Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.

Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.

View Article and Find Full Text PDF

rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.

Brain Struct Funct

January 2025

Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.

The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!