The diiron unit is commonly found as the active site in enzymes that catalyze important biological transformations. Two μ-(hydr)oxo-diiron(iii) complexes with the ligands 2,2'-(2-methyl-2-(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H2L) and 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H2L(NO2)), namely [(FeL)2(μ-O)] () and [(FeL(NO2))2(μ-OH)]ClO4 () were synthesized and characterized. In the solid state, both structures are asymmetric, with unsupported (hydr)oxo bridges. Intramolecular hydrogen bonding of the ligand NH groups to the phenolate O atoms hold the diiron cores in a bent configuration (Fe-O-Fe angle of 143.7° for and 140.1° for ). A new phenolate bridged diferrous complex, [(FeL)2] (), was synthesized and characterized. Upon exposure to air the diferrous complex is oxidized to the diferric . Cyclic voltammetry at different scan rates and chemical reduction of [(FeL)2(μ-OH)]BPh4 () with cobaltocene revealed disproportionation followed by proton transfer, and a mixed-valence species could not be trapped. Subsequent exposure to molecular oxygen results in the formation of . Electrochemical studies of indicate easier reduction of the diiron(iii/iii) to the mixed-valence state than for . The protonation of by benzoic acid to form [(FeL)2(μ-OH)](+) only changes the Fe-O-Fe angle by 5° (from 143.7° to 138.6°), and the pKa of the hydroxo bridge is estimated to be about 20.4. We attribute this high pKa partly to stabilization of the benzoate by hydrogen bonding to the ligand's amine proton. Magnetic susceptibility studies on solid samples of and yielded values of the antiferromagnetic exchange coupling constants, J, for these S = 5/2 dimers of -13.1 cm(-1) and -87.5 cm(-1), respectively, typical of such unsupported hydroxo- and oxo-bridges.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt00047aDOI Listing

Publication Analysis

Top Keywords

synthesized characterized
8
hydrogen bonding
8
fe-o-fe angle
8
diferrous complex
8
redox acid-base
4
acid-base properties
4
properties asymmetric
4
asymmetric non-heme
4
non-heme hydroxo-bridged
4
hydroxo-bridged diiron
4

Similar Publications

Introduction: Medication errors occur at any point of the medication management process and are a major cause of death and harm globally. The perioperative environment introduces challenges in identifying medication errors due to the frequent use of time-sensitive, high-alert medications in a dynamic and intricate setting. Pharmacists could potentially reduce the occurrence of these errors because of their training and expertise.

View Article and Find Full Text PDF

Traditional photocatalysts often have limited efficiency due to the high recombination rate of photogenerated electron-hole pairs. In this work, we synthesized 3D/2D ZnSe-MXene heterojunctions by an in situ electrostatic self-assembly method. Notably, the 3% MXene-ZnSe composite exhibited an optimized photocatalytic hydrogen production rate of 765.

View Article and Find Full Text PDF

Functional mechanisms and potential therapeutic strategies for lactylation in liver disease.

Life Sci

January 2025

Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun 130000, Jilin Province, China. Electronic address:

Lactylation, a novel form of lactate-mediated protein post-translational modification (PTM), has been identified as a crucial regulator of gene expression and protein function through the modification of both histone and non-histone proteins. Liver disease is frequently characterized by a reprogramming of glucose metabolism and subsequent lactate accumulation. Recent research has implicated lactylation in a diverse array of hepatic pathologies, including liver injury, non-alcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma.

View Article and Find Full Text PDF

Understanding the phase structure evolution and charge storage mechanism of FeCoNi-MOFs as electrodes for asymmetric supercapacitors.

J Colloid Interface Sci

January 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China. Electronic address:

Metal-organic frameworks (MOFs) due to abundant apertures, adjustable components, and multi-purpose structures have broad application prospects in supercapacitors. However, its low conductivity, poor stability, and difficulty growing evenly on the conductive substrate limit the electrochemical energy storage performance. Herein, with FeCoNi-OH nanosheets serving as the precursors, the trimetallic FeCoNi-MOF (FCNM) multilayer structure is successfully synthesized on activated carbon cloth (AC), and its optimal growth state (FCNM/AC-12 h) is achieved by regulating the reaction time.

View Article and Find Full Text PDF

Hydrazine (NH) and hydrogen sulfide (HS) are environmental contaminants that adversely affect human health. Fluorescence-based detection methods for these analytes utilize their nucleophilicity and reducing ability. Therefore, fluorescent sensors capable of detecting and distinguishing hydrazine and HS are highly beneficial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!