Micro-organisms sense the availability of nutrients in their environment to control cellular behaviour and the expression of transporters and enzymes that are required for the utilization of these nutrients. In the pathogenic yeast Candida albicans, the preferred nitrogen source ammonium suppresses the switch from yeast to filamentous growth in response to certain stimuli, and it also represses the secretion of proteases, which are required for the utilization of proteins as an alternative nitrogen source. To investigate whether C. albicans senses the availability of ammonium in the extracellular environment or if ammonium uptake into the cell is required to regulate morphogenesis and gene expression, we compared the behaviour of wild-type cells and ammonium uptake-deficient mutants in the presence and absence of extracellular ammonium. Arginine-induced filamentous growth was suppressed by ammonium in the wild-type, but not in mutants lacking the ammonium permeases Mep1 and Mep2. Similarly, ammonium suppressed protease secretion and extracellular protein degradation in the wild-type, but not in mutants lacking the ammonium transporters. By comparing the gene expression profiles of C. albicans grown in the presence of low or high ammonium concentrations, we identified a set of genes whose expression is controlled by nitrogen availability. The repression of genes involved in the utilization of alternative nitrogen sources, which occurred under ammonium-replete conditions in the wild-type, was abrogated in mep1Δ mep2Δ mutants. These results demonstrate that C. albicans does not respond to the presence of sufficient amounts of the preferred nitrogen source ammonium by sensing its availability in the environment. Instead, ammonium has to be taken up into the cell to control morphogenesis, protease secretion and gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.078238-0 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Yanzhou District People's Hospital, Jining, Shandong, China.
Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.
Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.
World J Surg Oncol
January 2025
Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.
Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).
Mol Med
January 2025
Department of Urology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510920, Guangdong, People's Republic of China.
Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!