Cognac and brandy components are electrochemically oxidized on multi-walled carbon nanotube modified glassy carbon electrode at 0.44 and 0.59 V in 0.1 М phosphate buffer solution pH 3.0. Voltammetric behavior of the main antioxidant constituents of cognac (ellagic and gallic acids, syringaldehyde, coniferaldehyde, vanillin, 5-hydroxymethylfurfural and furfural) has been investigated. The peak at the less positive potential of cognacs is caused by oxidation of gallic acid as well as syringaldehyde- and coniferaldehyde. The second peak corresponds to ellagic acid oxidation. One-step chronoamperometry at 0.59 V for 75 s has been applied for the cognac and brandy antioxidant capacity (AOC) evaluation. Ellagic acid, being the main antioxidant of cognac, has been used as a reference substance. The chronoamperometric response of ellagic acid is linear in the range of 0.66-52.8 µM with the limit of detection and quantification at 0.19 and 0.63 µM, respectively. AOC in ellagic acid equivalents per 100mL of cognac and brandy for different denominations (11 cognacs and 11 ordinary and vintage brandies) has been estimated. AOC of cognacs and brandies increases with the age of the beverages. Positive correlations (r=0.9134-0.9703) with common parameters characterizing antioxidant properties of beverages, in particular antiradical activity, total phenolics content, total antioxidant capacity and ferric reducing power have been observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2014.03.039 | DOI Listing |
Foods
December 2023
Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
Sensors (Basel)
February 2023
Department of High Molecular and Organoelement Compounds, Kazan Federal University, Kremleyevskaya 18, Kazan 420008, Russia.
Cognac and brandy quality control is an actual topic in food analysis. Aromatic aldehydes, particularly syringaldehyde and vanillin, are one of the markers used for these purposes. Therefore, simple and express methods for their simultaneous determination are required.
View Article and Find Full Text PDFFood Microbiol
May 2023
SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France. Electronic address:
Although the impact of nitrogen nutrition on the production of fermentative aromas in oenological fermentation is well known today, one may wonder whether the effects studied are the same when winemaking takes place at high turbidities, specifically for the production of wines intended for cognac distillation. To that effect, a fermentation robot was used to analyze 30 different fermentation conditions at two turbidity levels with several factors tested: (i) initial addition of nitrogen either organic (with a mixture of amino acids - MixAA) or inorganic with di-ammonium phosphate (DAP) at different concentrations, (ii) variation of the ratio of inorganic/organic nitrogen (MixAA and DAP) and (iii) addition of different single amino acids (alanine, arginine, aspartic acid and glutamic acid). A metabolomic analysis was carried out on all resulting wines to have a global vision of the impact of nitrogen on more than sixty aromatic molecules of various families.
View Article and Find Full Text PDFAlcohol Clin Exp Res
October 2022
Centre for Alcohol Policy Research, La Trobe University, Melbourne, Victoria, Australia.
Background: Seeing alcohol in media has been demonstrated to increase alcohol craving, impulsive decision-making, and hazardous drinking. Due to the exponential growth of (social) media use it is important to develop algorithms to quantify alcohol exposure efficiently in electronic images. In this article, we describe the development of an improved version of the Alcoholic Beverage Identification Deep Learning Algorithm (ABIDLA), called ABIDLA2.
View Article and Find Full Text PDFFood Chem
August 2022
Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882, Villenave d'Ornon, France. Electronic address:
Ellagitannins are the main extractible phenolic compounds in oak wood. They can be extracted by eaux-de-vie aging in barrels but rapidly undergo chemical transformations, such as hydrolysis, reduction, oxidation, or even substitution reactions. Given gaps in knowledge about their composition in spirits, the goal of this work was to explore ellagitannin behavior during Cognac eaux-de-vie aging and search for new C-glucosidic ellagitannin-derived compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!