Dopamine functionalized-CdTe quantum dots as fluorescence probes for l-histidine detection in biological fluids.

Talanta

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Published: July 2014

In this paper, we developed dopamine functionalized-CdTe quantum dots as fluorescence probes for the determination of l-histidine. Firstly, CdTe was covalently linked to dopamine to form a kind of fluorescence sensor with pyrocatechol structure on the surface. The photoluminescence intensity of CdTe-dopamine (QDs-DA) could be quenched by Ni(2+) due to the strong coordination interaction between the pyrocatechol structure of QDs-DA and Ni(2+). In the presence of l-histidine, Ni(2+) preferred to bind with l-histidine due to high affinity of Ni(2+) to l-histidine and the photoluminescence intensity of QDs-DA was recovered. The recovered photoluminescence intensity of QDs-DA was proportional to the concentration of l-histidine in the ranges of 1.0×10(-6)-1.0×10(-4)mol L(-1) and the detection limit was 5.0×10(-7)mol L(-1) respectively. The established method showed a good selectivity for l-histidine among other common amino acids, and it was applied for determination of l-histidine in human serum sample with satisfactory results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2014.02.060DOI Listing

Publication Analysis

Top Keywords

photoluminescence intensity
12
dopamine functionalized-cdte
8
functionalized-cdte quantum
8
quantum dots
8
dots fluorescence
8
fluorescence probes
8
l-histidine
8
determination l-histidine
8
pyrocatechol structure
8
intensity qds-da
8

Similar Publications

Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.

View Article and Find Full Text PDF

Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs).

View Article and Find Full Text PDF

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.

View Article and Find Full Text PDF

Sustainable Carbon Dots Loaded into Carboxymethylcellulose Based Hydrogels for Uterine Cancer Bioimaging.

Pharmaceutics

November 2024

iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal.

: The development of innovative materials for disease diagnostics and therapeutics is a fast-growing area of scientific research. In this work, we report the development of innovative hydrogels incorporating carbon dots (Cdots) for bioimaging purposes. : The Cdots were prepared using a sustainable and low-cost process, starting with an underused fiber from the Brazilian semiarid region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!