Background: Although human red blood cell (RBC) units may be refrigerator stored for up to 42 days, transfusion of older RBCs acutely delivers a large bolus of iron to mononuclear phagocytes. Similarly, iron dextran circulates in plasma for hours to days and is progressively cleared by mononuclear phagocytes, which return iron to plasma. Finally, malaria infection continuously delivers iron to macrophages by intra- and extravascular hemolysis. Studies suggest that iron administration increases infectious risk.
Study Design And Methods: To assess the effects of increased iron availability on susceptibility to infection, we infected mice with model Gram-negative intracellular or extracellular pathogens (Salmonella typhimurium or Escherichia coli, respectively), accompanied by RBC transfusion, iron dextran administration, or malarial coinfection.
Results: In our mouse models, transfusion of older RBCs exacerbates infection with both Gram-negative pathogens. Although iron dextran exacerbates E. coli infection to a similar extent as transfusion of corresponding amounts of iron, higher iron doses are required to produce comparable effects with S. typhimurium. Coinfection of mice with Plasmodium yoelii and S. typhimurium produces overwhelming Salmonella sepsis. Finally, treating mice with antibiotics abrogates the enhancing effect on E. coli infection of both older RBC transfusion and iron dextran administration.
Conclusions: Transfusion of older RBCs exacerbates Gram-negative infection to a similar extent as malaria coinfection or iron dextran administration. Appropriate antibiotic therapy abrogates the effect of older RBC transfusions on infection with E. coli. Iron delivery to macrophages may be an underappreciated mechanism mediating, at least some, adverse effects of RBC transfusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4229414 | PMC |
http://dx.doi.org/10.1111/trf.12712 | DOI Listing |
Acta Vet Scand
January 2025
Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark.
Background: Prevention of iron deficiency in suckling piglets by intramuscular injection of a standardized amount of iron dextran or gleptoferron in the first days of life can lead to over- or underdosage with respective health risks. Currently, combined iron products containing an active substance against coccidia are also used on farms. When using a combination product targeting two diseases, an adjustment of the necessary amount of iron to prevent anaemia in the frame of a farm-specific treatment protocol is not possible.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
Iron overload has been associated with cerebrovascular disease and cognitive impairment in β-thalassaemia patients, typically appearing earlier than in the general population. However, the mechanisms of iron overload on cerebrovascular pathology remain unclear. This study investigated the effects of heavy iron overload on the blood-brain barrier and neurohistology, particularly in the CA3 region of hippocampus and its contribution to cognitive impairment in β-thalassaemia mice.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.
View Article and Find Full Text PDFJ Adv Res
December 2024
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Introduction: Iron overload disrupts gut microbiota and induces ferroptosis, contributing to colitis. However, whether gut microbiota directly drives iron overload-induced colitis and its underlying mechanism remain unclear.
Objectives: The study aimed to explore whether gut microbiota can directly regulate iron overload-induced colitis and its underling mechanism.
Pediatr Int
December 2024
Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan.
Background: Clinical studies have shown that diffuse chorioamniotic hemosiderosis (DCH) is a risk factor for bronchopulmonary dysplasia (BPD). However, the details of the underlying mechanism are unknown. We focused on iron, one of the blood components that diffuses within the amniotic cavity in DCH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!