Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-014-0199-4 | DOI Listing |
Sci Data
January 2025
Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
Goosegrass, belonging to the genus Eleusine within the Chloridoideae subfamily, is often one of the problematic weeds with strong invasiveness, competing with crops for essential survival resources. Although a chromosome-level genome assembly of E. indica from China was published last year, the present research focuses on a population of E.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
Endophytic fungi possess a unique ability to produce abundant secondary metabolites, which play an active role in the growth and development of host plants. In this study, chemical investigations on the endophytic fungus TE-739D derived from the cultivated tobacco ( L.) afforded two new polyketide derivatives, namely japoniones A () and B (), as well as four previously reported compounds -.
View Article and Find Full Text PDFBMC Genomics
January 2025
Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
Background: Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits.
Results: Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp.
Plants (Basel)
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing from weeds.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
Background: Finger millet, a C plant with mesophyll and bundle sheath cells, has been cultivated at high altitudes in the Himalayas owing to its adaptability to stressful environments. Under environmental stresses such as high light and drought, finger millet mesophyll chloroplasts move toward the bundle sheath, a phenomenon known as aggregative arrangement.
Methods: To investigate the effect of low temperatures on mesophyll chloroplast arrangement in finger millet, we conducted microscopic observations and photochemical measurements using leaves treated at different temperatures in light or darkness, with or without pharmacological inhibitors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!