Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma.

Clin Cancer Res

Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.

Published: June 2014

Purpose: To develop effective combination therapy against pancreatic ductal adenocarcinoma (PDAC) with a combination of chemotherapy, CHK1 inhibition, and EGFR-targeted radioimmunotherapy.

Experimental Design: Maximum tolerated doses were determined for the combination of gemcitabine, the CHK1 inhibitor PF-477736, and Lutetium-177 ((177)Lu)-labeled anti-EGFR antibody. This triple combination therapy was investigated using PDAC models from well-established cell lines, recently established patient-derived cell lines, and fresh patient-derived xenografts. Tumors were investigated for the accumulation of (177)Lu-anti-EGFR antibody, survival of tumor-initiating cells, induction of DNA damage, cell death, and tumor tissue degeneration.

Results: The combination of gemcitabine and CHK1 inhibitor PF-477736 with (177)Lu-anti-EGFR antibody was tolerated in mice. This triplet was effective in established tumors and prevented the recurrence of PDAC in four cell line-derived and one patient-derived xenograft model. This exquisite response was associated with the loss of tumor-initiating cells as measured by flow cytometric analysis and secondary implantation of tumors from treated mice into treatment-naïve mice. Extensive DNA damage, apoptosis, and tumor degeneration were detected in the patient-derived xenograft. Mechanistically, we observed CDC25A stabilization as a result of CHK1 inhibition with consequent inhibition of gemcitabine-induced S-phase arrest as well as a decrease in canonical (ERK1/2 phosphorylation) and noncanonical EGFR signaling (RAD51 degradation) as a result of EGFR inhibition.

Conclusions: Our study developed an effective combination therapy against PDAC that has potential in the treatment of PDAC.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-14-0048DOI Listing

Publication Analysis

Top Keywords

gemcitabine chk1
12
chk1 inhibition
12
combination therapy
12
pancreatic ductal
8
ductal adenocarcinoma
8
effective combination
8
combination gemcitabine
8
chk1 inhibitor
8
inhibitor pf-477736
8
cell lines
8

Similar Publications

Targeted inhibition of CHKα and mTOR in models of pancreatic ductal adenocarcinoma: A novel regimen for metastasis.

Cancer Lett

November 2024

Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China. Electronic address:

Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with no effective treatments for its spread, but researchers found that metastatic cells express a protein called focal adhesion kinase (FAK), which influences choline metabolism and promotes metastasis.
  • A newly designed drug, CHKI-03, effectively inhibits metastasis in various lab models by blocking CHKα, a protein linked to tumor growth, while also disrupting a feedback loop involving mTOR that fuels cancer progression.
  • Combining CHKI-03 with rapamycin, an mTOR inhibitor, shows strong potential in resisting tumor growth and metastasis in models of PDAC, indicating a promising new approach for treating
View Article and Find Full Text PDF

The PPP2R1A cancer hotspot mutant p.R183W increases clofarabine resistance in uterine serous carcinoma cells by a gain-of-function mechanism.

Cell Oncol (Dordr)

October 2024

Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Gasthuisberg O&N1, Herestraat 49, PO-box 901, Leuven, B-3000, Belgium.

Purpose: Uterine serous carcinoma (USC) is generally associated with poor prognosis due to a high recurrence rate and frequent treatment resistance; hence, there is a need for improved therapeutic strategies. Molecular analysis of USC identified several molecular markers, useful to improve current treatments or identify new druggable targets. PPP2R1A, encoding the Aα subunit of the tumor suppressive Ser/Thr phosphatase PP2A, is mutated in up to 40% of USCs.

View Article and Find Full Text PDF

Despite the recent advancement in diagnosis and therapy, pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is still the most lethal cancer with a low five-year survival rate. There is an urgent need to develop new therapies to address this issue. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, miR-15a and miR-194, with the chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics, Gem-miR-15a and Gem-miR-194, respectively.

View Article and Find Full Text PDF

Discovery of pyrido[3,2-d]pyrimidin-6(5H)-one derivatives as checkpoint kinase 1 (CHK1) inhibitors with potent antitumor efficacy.

Eur J Med Chem

April 2024

Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China. Electronic address:

Checkpoint kinase 1 (CHK1) plays a crucial role in the DNA damage response pathway, making it an attractive target for cancer therapy. Herein, we present the synthesis, optimization, and evaluation of selective CHK1 inhibitors with a pyrido[3,2-d]pyrimidin-6(5H)-one scaffold. Among them, compound 11 showed single-digit nanomolar potency against CHK1 (IC: 0.

View Article and Find Full Text PDF

Purpose: Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC.

Patients And Methods: Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!