Leishmania spp. are parasitic protozoa endemic in tropical and subtropical regions and the causative agent of leishmaniasis, a collection of syndromes whose clinical manifestations vary according to host and pathogen factors. Leishmania spp. are inoculated into the mammalian host by the bite of an infected sand fly, whereupon they are taken up by phagocytosis, convert into the replicative amastigote stage within macrophages, reproduce, spread to new macrophages and cause disease manifestations. A curative response against leishmaniasis depends in the classical activation of macrophages and the IL-12-dependent onset of an adaptive type 1 response characterized by the production of IFN-γ. Emerging evidence suggests that neutrophils, dendritic cells and other immune cells can serve as either temporary or stable hosts for Leishmania spp. Furthermore, it is becoming apparent that the initial interactions of the parasite with resident or early recruited immune cells can shape both the macrophage response and the type of adaptive immune response being induced. In this review, we compile a growing number of studies demonstrating how the earliest interactions of Leishmania spp. with eosinophils and mast cells influence the macrophage response to infection and the development of the adaptive immune response, hence, determining the ultimate outcome of infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5106292 | PMC |
http://dx.doi.org/10.1007/s12026-014-8536-x | DOI Listing |
Animals (Basel)
January 2025
Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro 21040-360, Brazil.
Zoonotic visceral leishmaniasis is caused by () and dogs are the main domestic reservoir. This study compared the performance of parasitological tests using semi-automatic needle puncture (SANP) for collecting popliteal lymph node samples with samples collected from the same lymph node by fine needle aspiration puncture (FNAP) and by necropsy for the diagnosis of canine visceral leishmaniasis (CVL). Popliteal lymph node samples were collected from 30 CVL-seropositive dogs from an endemic region in Brazil.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.
Macrophages represent a fundamental component of the innate immune system that play a critical role in detecting and responding to pathogens as well as danger signals. Leishmania spp. infections lead to a notable alteration in macrophage metabolism, whereby infected cells display heightened energy metabolism that is linked to the integrity of host mitochondria.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Cutaneous leishmaniasis is a parasitic disease that poses significant diagnostic challenges due to the variability of results and reliance on operator expertise. This study addresses the development of a system based on machine learning algorithms to detect spp. parasite in direct smear microscopy images, contributing to the diagnosis of cutaneous leishmaniasis.
View Article and Find Full Text PDFExp Parasitol
December 2024
Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela. Electronic address:
In Leishmania, the nucleotide-sugar UDP-galactose can be synthesized by a salvage pathway, the Isselbacher route, involving phosphorylation of galactose and the action of UDP-sugar pyrophosphorylase. The first enzyme of the pathway, galactokinase, has yet to be studied in this parasite. Here, we report a molecular and biochemical characterization of this enzyme in Leishmania mexicana.
View Article and Find Full Text PDFVet Sci
December 2024
Fundació Hospital Clínic Veterinari, Universitat Autὸnoma de Barcelona, 08193 Bellaterra, Spain.
This study aimed to evaluate differences in the production of reactive oxygen species (ROS) by peripheral blood neutrophils in healthy dogs, dogs with superficial pyoderma, and dogs with sterile neutrophilic dermatitis using the nitroblue tetrazolium (NBT) reduction test. Additionally, the study assessed the potential of the NBT reduction test as a diagnostic tool to differentiate between these clinical conditions. A total of 28 dogs were divided into three groups: healthy (n = 10), superficial pyoderma (n = 10), and sterile neutrophilic dermatitis (n = 8).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!