While core-shell wire-based devices offer a promising path toward improved optoelectronic applications, their development is hampered by the present uncertainty about essential semiconductor properties along the three-dimensional (3D) buried p-n junction. Thanks to a cross-sectional approach, scanning electron beam probing techniques were employed here to obtain a nanoscale spatially resolved analysis of GaN core-shell wire p-n junctions grown by catalyst-free metal-organic vapor phase epitaxy on GaN and Si substrates. Both electron beam induced current (EBIC) and secondary electron voltage constrast (VC) were demonstrated to delineate the radial and axial junction existing in the 3D structure. The Mg dopant activation process in p-GaN shell was dynamically controlled by the ebeam exposure conditions and visualized thanks to EBIC mapping. EBIC measurements were shown to yield local minority carrier/exciton diffusion lengths on the p-side (∼57 nm) and the n-side (∼15 nm) as well as depletion width in the range 40-50 nm. Under reverse bias conditions, VC imaging provided electrostatic potential maps in the vicinity of the 3D junction from which acceptor Na and donor Nd doping levels were locally determined to be Na = 3 × 10(18) cm(-3) and Nd = 3.5 × 10(18) cm(-3) in both the axial and the radial junction. Results from EBIC and VC are in good agreement. This nanoscale approach provides essential guidance to the further development of core-shell wire devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl5010493DOI Listing

Publication Analysis

Top Keywords

p-n junction
8
electron beam
8
core-shell wire
8
1018 cm-3
8
junction
5
direct imaging
4
imaging p-n
4
core-shell
4
junction core-shell
4
core-shell gan
4

Similar Publications

Anomalous photovoltaics in Janus MoSSe monolayers.

Nat Commun

January 2025

International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China.

The anomalous photovoltaic effect (APE) in polar crystals is a promising avenue for overcoming the energy conversion efficiency limits of conventional photoelectric devices utilizing p-n junction architectures. To facilitate effective photocarrier separation and enhance the APE, polar materials need to be thinned down to maximize the depolarization field. Here, we demonstrate Janus MoSSe monolayers (~0.

View Article and Find Full Text PDF

Cu2O has attracted significant attention as a potential photocatalyst for CO2 reduction. However, its practical use is limited by rapid charge recombination, insufficient catalytic sites, and poor stability. In this study, we report a facile synthesis of Cu2O@BiOCl core-shell hybrids with well-defined shape of Cu2O and two-dimensional nanosheet structure of BiOCl.

View Article and Find Full Text PDF

Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device.

View Article and Find Full Text PDF

BiWO@CuO-GO bio-heterojunction spray for accelerating chronic diabetic wound repairment with bilaterally enhanced sono-catalysis and glycolytic inhibition antisepsis.

Biomaterials

December 2024

Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China. Electronic address:

Chronic diabetic wound poses a pressing global healthcare challenge, necessitating an approach to address issues such as pathogenic bacteria elimination, blood sugar regulation, and angiogenesis stimulation. Herein, we engineered a BiWO@CuO-GOx bio-heterojunction (BWCG bio-HJ) with exceptional cascade catalytic performance and impressive sonosensitivity to remodel the wound microenvironment and expedite the diabetic wound healing. Specifically, the Z-scheme junctions of BiWO@CuO significantly augmented carrier separation dynamics, leading to the highly efficient generation of reactive oxygen species (ROS) upon US irradiations.

View Article and Find Full Text PDF

Study on Electrical and Temperature Characteristics of β-GaO-Based Diodes Controlled by Varying Anode Work Function.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, National Engineering Research Center of Wide Band-Gap Semiconductor, School of Microelectronics, Xidian University, Xi'an 710071, China.

This study systematically investigates the effects of anode metals (Ti/Au and Ni/Au) with different work functions on the electrical and temperature characteristics of β-GaO-based Schottky barrier diodes (SBDs), junction barrier Schottky diodes (JBSDs) and P-N diodes (PNDs), utilizing Silvaco TCAD simulation software, device fabrication and comparative analysis. From the perspective of transport characteristics, it is observed that the SBD exhibits a lower turn-on voltage and a higher current density. Notably, the V of the Ti/Au anode SBD is merely 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!