Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An economical alternative to conventional crudes, Canadian bitumen, harvested as a semi-liquid, is diluted with condensate to make it viable to transport by pipeline to coastal areas where it would be shipped by tankers to global markets. Not much is known about the fate of diluted bitumen (dilbit) when spilled at sea. For this purpose, we conducted dilbit (Access Western Blend; AWB and Cold Lake Blend; CLB) weathering studies for 13 days in a flume tank containing seawater. After six days of weathering, droplets detached from the AWB slick and were dense enough to sink in seawater. The density of CLB also increased, but at a slower rate compared to AWB, which was attributed to the high concentration of alkylated polycyclic aromatic hydrocarbons in it, which are more resistant to weathering. An empirical, Monod-type model was introduced and was found to closely simulate the increase in oil density with time. Such a model could be used within oil spill models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2014.04.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!