Expression of the surface protein Cnm has been directly implicated in the ability of certain strains of Streptococcus mutans to bind to collagen and to invade human coronary artery endothelial cells (HCAEC) and in the killing of Galleria mellonella. Sequencing analysis of Cnm(+) strains revealed that cnm is located between the core genes SMU.2067 and SMU.2069. Reverse transcription-PCR (RT-PCR) analysis showed that cnm is cotranscribed with SMU.2067, encoding a putative glycosyltransferase referred to here as PgfS (protein glycosyltransferase of streptococci). Notably, Cnm contains a threonine-rich domain predicted to undergo O-linked glycosylation. The previously shown abnormal migration pattern of Cnm, the presence of the threonine-rich domain, and the molecular linkage of cnm with pgfS lead us to hypothesize that PgfS modifies Cnm. A ΔpgfS strain showed defects in several traits associated with Cnm expression, including collagen binding, HCAEC invasion, and killing of G. mellonella. Western blot analysis revealed that Cnm from the ΔpgfS mutant migrated at a lower molecular weight than that from the parent strain. In addition, Cnm produced by ΔpgfS was highly susceptible to proteinase K degradation, in contrast to the high-molecular-weight Cnm version found in the parent strain. Lectin-binding analyses confirmed the glycosylated nature of Cnm and strongly suggested the presence of N-acetylglucosamine residues attached to Cnm. Based on these findings, the phenotypes observed in ΔpgfS are most likely associated with defects in Cnm glycosylation that affects protein function, stability, or both. In conclusion, this study demonstrates that Cnm is a glycoprotein and that posttranslational modification mediated by PgfS contributes to the virulence-associated phenotypes linked to Cnm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135665 | PMC |
http://dx.doi.org/10.1128/JB.01783-14 | DOI Listing |
Nat Commun
January 2025
Physik-Institut, Universität Zürich, Zürich, Switzerland.
Clin Oral Investig
January 2025
Department of Operative Dentistry, Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil.
Objectives: This cross-sectional study aimed to evaluate the occurrence of Streptococcus spp., Streptococcus mutans, its serotypes (c, e, f, and k), collagen-binding genes (cnm/cbm), and Candida albicans in medium deep (D2) and deep (D3) dentin carious lesions of permanent teeth.
Materials And Methods: Carious dentin was collected from D2 (n = 23) and D3 (n = 24) lesions in posterior teeth from 31 individuals.
Acc Chem Res
January 2025
Laboratory for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
ConspectusThe design of properties and functions of molecular assemblies requires not only a proper choice of building blocks but also control over their packing arrangements. A highly versatile unit in this context is a particular type of triptycene with substituents at the 1,8,13-positions, called tripodal triptycene, which offers predictable molecular packing and multiple functionalization sites, both at the opposite 4,5,16- or 10 (bridgehead)-positions. These triptycene building blocks are capable of two-dimensional (2D) nested hexagonal packing, leading to the formation of 2D sheets, which undergo one-dimensional (1D) stacking into well-defined "2D+1D" structures.
View Article and Find Full Text PDFNanoscale Adv
December 2024
The Department of Chemistry & Biochemistry, The University of Texas at El Paso 500 W. University Ave. El Paso TX 79968 USA
Carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs), graphene quantum dots (GQDs), and carbon quantum dots (CQDs), are prevalent in biological systems and have been widely utilized in applications like environmental sensing and biomedical fields. While their presence in human matrices is projected to increase, the interfacial interactions between carbon-based nanoscopic platforms and biomolecular systems continue to remain underexplored. In this study, we investigated the effect of gelatin-sourced CQDs on the globular milk protein beta-lactoglobulin (BLG).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CERN, Geneva, Switzerland.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!