We report the fabrication of a photonic platform consisting of single wire light-emitting diodes (LED) and photodetectors optically coupled by waveguides. MOVPE-grown (metal-organic vapor-phase epitaxy) InGaN/GaN p-n junction core-shell nanowires have been used for device fabrication. To achieve a good spectral matching between the emission wavelength and the detection range, different active regions containing either five narrow InGaN/GaN quantum wells or one wide InGaN segment were employed for the LED and the detector, respectively. The communication wavelength is ∼400 nm. The devices are realized by means of electron beam lithography on Si/SiO2 templates and connected by ∼100 μm long nonrectilinear SiN waveguides. The photodetector current trace shows signal variation correlated with the LED on/off switching with a fast transition time below 0.5 s.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl501124sDOI Listing

Publication Analysis

Top Keywords

photonic platform
8
integrated photonic
4
platform based
4
based ingan/gan
4
ingan/gan nanowire
4
nanowire emitters
4
emitters detectors
4
detectors report
4
report fabrication
4
fabrication photonic
4

Similar Publications

As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index.

View Article and Find Full Text PDF

A 3D millifluidic model of a dermal perivascular microenvironment on a chip.

Lab Chip

January 2025

Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.

The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies.

View Article and Find Full Text PDF

Application of ultra-weak photon emission imaging in plant stress assessment.

J Plant Res

January 2025

Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 779 00, Czech Republic.

The oxidative damage induced by abiotic stress factors such as salinity, drought, extreme temperatures, heavy metals, pollution, and high irradiance has been studied in Arabidopsis thaliana. Ultra-weak photon emission (UPE) is presented as a signature reflecting the extent of the oxidation process and/or damage. It can be used to predict the physiological state and general health of plants.

View Article and Find Full Text PDF

Digital Feedback Loop in Paraxial Fluids of Light: A Gate to New Phenomena in Analog Physical Simulations.

Phys Rev Lett

December 2024

Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.

View Article and Find Full Text PDF

Advances in Functional Nucleic Acid SERS Sensing Strategies.

ACS Sens

January 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.

Functional nucleic acids constitute a distinct category of nucleic acids that diverge from conventional nucleic acid amplification methodologies. They are capable of forming intricate hybrid structures through Hoogsteen and reverse Hoogsteen hydrogen bonding interactions between double-stranded and single-stranded DNA, thereby broadening the spectrum of DNA interactions. In recent years, functional DNA/RNA-based surface-enhanced Raman spectroscopy (SERS) has emerged as a potent platform capable of ultrasensitive and multiplexed detection of a variety of analytes of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!