We report the design, fabrication and evaluation of an array of microdevices composed of high aspect ratio PDMS pillars, dedicated to the study of tumour spheroid mechanical properties. The principle of the microdevice is to confine a spheroid within a circle of micropillars acting as peripheral flexible force sensors. We present a technological process for fabricating high aspect ratio micropillars (300 μm high) with tunable feature dimensions (diameter and spacing) enabling production of flexible PDMS pillars with a height comparable to spheroid sizes. This represents an upscale of 10 along the vertical direction in comparison to more conventional PDMS pillar force sensors devoted to single cell studies, while maintaining their force sensitivity in the same order of magnitude. We present a method for keeping these very high aspect ratio PDMS pillars stable and straight in liquid solution. We demonstrate that microfabricated devices are biocompatible and adapted to long-term spheroid growth. Finally, we show that the spheroid interaction with the micropillars' surface is dependent on PDMS cellular adhesiveness. Time-lapse recordings of growth-induced micropillars' bending coupled with a software program to automatically detect and analyse micropillar displacements are presented. The use of these microdevices as force microsensors opens new prospects in the fields of tissue mechanics and pharmacological drug screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4lc00197d | DOI Listing |
Pak J Pharm Sci
January 2025
The Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
In order to make the drugs can cure the tumor precisely, this paper establishes the tumor immune dynamic model through the differential equation of tumor growth and analyzes the persistence of the tumor immune model. Research on dual anticancer drugs and commonly used coupling methods is carried out to complete the synthesis of polyethylene glycol dual anticancer drug couplers and the antitumor activity is analyzed to derive the degree of inhibition of polyethylene glycol dual anticancer drugs on tumor activity. From the four judging criteria, it was concluded that the polyethylene glycol bis-anti-cancer drug has a better curative effect on tumor cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam-si, 13120, Republic of Korea.
Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.
View Article and Find Full Text PDFSci Rep
January 2025
Air Force Engineering University, Xi'an, 710038, Shaanxi, China.
Sci Data
January 2025
School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2017, South Africa.
The Southern Ground Hornbill (SGH - Bucorvus leadbeateri) is one of the largest hornbill species worldwide, known for its complex social structures and breeding behaviours. This bird has been of great interest due to its declining population and disappearance from historic ranges in southern Africa. Despite being the focus of numerous conservation efforts, with research forming an integral part of these initiatives, there is still a substantial lack of knowledge regarding the molecular biology aspects of this bird species.
View Article and Find Full Text PDFMed Image Anal
January 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!