Electrolyte layering at the calcite(104)-water interface indicated by Rb(+)- and Se(VI) K-edge resonant interface diffraction.

Phys Chem Chem Phys

Institut für Nukleare Entsorgung, Karlsruher Institut für Technologie, P.O. Box 3640, 76021 Karlsruhe, Germany.

Published: July 2014

Calcite-water interface reactions are of major importance in various environmental settings as well as in industrial applications. Here we present resonant interface diffraction results on the calcite(104)-aqueous solution interface, measured in solutions containing either 10 mmol L(-1) RbCl or 0.5 mmol L(-1) Se(VI). Results indicate that Rb(+) ions enter the surface adsorbed water layers and adsorb at the calcite(104)-water interface in an inner-sphere fashion. A detailed analysis based on specular and off-specular resonant interface diffraction data reveals three distinct Rb(+) adsorption species: one 1.2 Å above the surface, the second associated with surface adsorbed water molecules 3.2 Å above the surface, and the third adsorbed in an outer-sphere fashion 5.6 Å above the surface. A peak in resonant amplitude between L = 1.5 and L = 3.0 is interpreted as signal from a layered electrolyte structure. The presence of a layered electrolyte structure seems to be confirmed by data measured in the presence of Se(VI).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp00672kDOI Listing

Publication Analysis

Top Keywords

resonant interface
12
interface diffraction
12
calcite104-water interface
8
mmol l-1
8
surface adsorbed
8
adsorbed water
8
layered electrolyte
8
electrolyte structure
8
interface
7
surface
5

Similar Publications

Encephalitis due to Epstein-Barr Virus (EBV) is a rare condition that primarily affects children and immunosuppressed patients. Diagnosing EBV encephalitis can be challenging due to its nonspecific clinical presentation and the lack of confirmatory tests. We present the case of a 66-year-old woman with a history of kidney transplantation who was admitted due to progressive subacute mental deterioration, preceded by vertigo and without fever.

View Article and Find Full Text PDF

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Tumor hypoxia significantly limits the effectiveness of radiotherapy, as oxygen is crucial for producing cancer-killing reactive oxygen species. To address this, we synthesized nanosized faujasite (PBS-Na-FAU) zeolite crystals using clinical-grade phosphate-buffered saline (PBS) as the solvent, ensuring preserved crystallinity, microporous volume, and colloidal stability. The zeolite nanocrystals showed enhanced safety profiles and , and studies showed no apparent toxicity to animals.

View Article and Find Full Text PDF

Ultrathin 2D Cu-Porphyrin MOF Nanosheet Loaded FeO Nanoparticles As a Multifunctional Nanoplatform for Synergetic Chemodynamic and Photodynamic Therapy Independent of O.

ACS Appl Mater Interfaces

January 2025

College of Chemistry and Materials Science, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.

In this study, we developed a multifunctional nanoplatform to address the limitations of strictly acidic pH for the Fenton reaction involving FeO and the low efficiency of mono treatments. The hybrid material, FeO@Cu-TCPP, was assembled through hydrophobic interactions of polyvinylpyrrolidone (PVP) coated on its surface. The efficiency of the Fenton reaction using FeO was significantly enhanced by the photo-Fenton process in the presence of Cu-TCPP.

View Article and Find Full Text PDF

Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!