This paper presents a sandwich-structured CdS-Au-TiO2 nanorod array as the photoanode in a photoelectrochemical cell (PEC) for hydrogen generation via splitting water. The gold nanoparticles sandwiched between the TiO2 nanorod and the CdS quantum dot (QD) layer play a dual role in enhancing the solar-to-chemical energy conversion efficiency. First, the Au nanoparticles serve as an electron relay, which facilitates the charge transfer between CdS and TiO2 when the CdS QDs are photoexcited by wavelengths shorter than 525 nm. Second, the Au nanoparticles act as a plasmonic photosensitizer, which enables the solar-to-hydrogen conversion at wavelengths longer than the band edge of CdS, extending the photoconversion wavelength from 525 to 725 nm. The dual role of Au leads to a photocurrent of 4.07 mA/cm(2) at 0 V (vs Ag|AgCl) under full solar spectrum irradiation and a maximum solar-to-chemical energy conversion efficiency of 2.8%. An inversion analysis is applied to the transient absorption spectroscopy data, tracking the transfer of electrons and holes in the heterostructure, relating the relaxation dynamics to the underlying coupled rate equation and revealing that trap-state Auger recombination is a dominant factor in interfacial charge transfer. It is found that addition of Au nanoparticles increases the charge-transfer lifetime, reduces the trap-state Auger rate, suppresses the long-time scale back transfer, and partially compensates the negative effects of the surface trap states. Finally, the plasmonic energy-transfer mechanism is identified as direct transfer of the plasmonic hot carriers, and the interfacial Schottky barrier height is shown to modulate the plasmonic hot electron transfer and back transfer. Transient absorption characterization of the charge transfer shows defect states cannot be ignored when designing QD-sensitized solar cells. This facile sandwich structure combines both the electrical and the optical functions of Au nanoparticles into a single structure, which has implications for the design of efficient solar-energy-harvesting devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja503508gDOI Listing

Publication Analysis

Top Keywords

charge transfer
12
hydrogen generation
8
nanorod array
8
electron relay
8
plasmonic photosensitizer
8
dual role
8
solar-to-chemical energy
8
energy conversion
8
conversion efficiency
8
transfer
8

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!