We study the phase diagram of the inverted InAs/GaSb bilayer quantum wells. For a small tunneling amplitude between the layers, we find that the system is prone to the formation of an s-wave exciton condensate phase, where the spin structure of the order parameter is uniquely determined by the small spin-orbit coupling arising from the bulk inversion asymmetry. The phase is topologically trivial and does not support edge transport. On the contrary, for a large tunneling amplitude, we obtain a topologically nontrivial quantum spin Hall insulator phase with a p-wave exciton order parameter, which enhances the hybridization gap. These topologically distinct insulators are separated by an insulating phase with spontaneously broken time-reversal symmetry. Close to the phase transition between the quantum spin Hall and time-reversal broken phases, the edge transport shows quantized conductance in small samples, whereas in long samples the mean free path associated with the backscattering at the edge is temperature independent, in agreement with recent experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.176403 | DOI Listing |
ACS Nano
January 2025
Division of Physical Sciences, College of Letters and Science, University of California Los Angeles, Los Angeles, California 90095, United States.
Defect emitters in silicon are promising contenders as building blocks of solid-state quantum repeaters and sensor networks. Here, we investigate a family of possible isoelectronic emitter defect complexes from a design standpoint. We show that the identification of key physical effects on quantum defect state localization can guide the search for telecom-wavelength emitters.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
X-ray absorption spectroscopy (XAS) is a powerful method for exploring molecular electronic structure by exciting core electrons into higher unoccupied molecular orbitals. In this study, we present the first integration of the spin-unrestricted similarity-transformed equation-of-motion coupled cluster method (CVS-USTEOM-CCSD) for core-excited and core-ionized states into the ORCA quantum chemistry package. Using the core-valence separation (CVS) approach, we evaluate the accuracy of CVS-USTEOM-CCSD across 13 open-shell organic systems, covering over 20 core excitations with diverse spin multiplicities (doublet, triplet, and quartet).
View Article and Find Full Text PDFNanoscale
January 2025
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA.
Quantum dots (QDs) are promising materials for optoelectronic applications, but their widespread adoption requires controllable, selective, and scalable deposition methods. While traditional methods like spin coating and drop casting are suitable for small-scale deposition onto flat substrates, and ink-jet printing offers precision for small areas, these methods struggle with conformal deposition onto non-planar, large area substrates or selective deposition onto large area chips. Electrophoretic deposition (EPD) is an efficient and versatile technique capable of achieving conformal and selective area deposition over large areas, but its application to QD films has been limited.
View Article and Find Full Text PDFNat Chem
January 2025
SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg, France.
Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore-radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet-radical pairs that can result in the formation of quartet states by spin mixing.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
In quantum information science and sensing, electron spins are often purified into a specific polarization through an optical-spin interface, a process known as optically detected magnetic resonance (ODMR). Diamond-NV centers and transition metals are both excellent platforms for these so-called color centers, while metal-free molecular analogues are also gaining popularity for their extended polarization lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin π-diradicals, we proposed to spin-polarize by shelving triplet = ±1 populations as singlets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!