The aim of this work was to evaluate the potential effects of antioxidant and lipid peroxidation parameters as indicators of exposure to spirotetramat and effects of acute toxicity in the Chinese toad Bufo bufo gargarizans. The results of an acute toxicity test showed that the 72 and 96 h median lethal concentrations (LC(50)) of spirotetramat for tadpoles were 6.98 and 6.45 mg/L, respectively. It indicated that the spirotetramat was moderate toxicity to Chinese toad tadpoles. In a sub-lethal toxicity test, the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) contents were determined after exposure to 0.03, 0.06, 0.13, 0.65, and 3.23 mg/L for 4, 15, and 30 days. SOD activity significantly in all experimental groups except the highest concentration group increased on day 4 but decreased on days 15 compared with that of the acetone control (P < 0.05). The most sensitive parameters was GSH-Px activity, which significantly increased on day 4, but was inhibited and decreased after prolonged exposure for 15 and 30 days except the lowest concentration treatment group (P < 0.05). The MDA content significantly decreased on day 30 (P < 0.05). During the entire experimental period, sub-lethal doses spirotetramat caused oxidative stress and lipid peroxidation in B. gargarizans tadpoles. These results indicate that sub-lethal even non-lethal spirotetramat are potentially toxic to amphibians. The information presented in this study will be helpful for understanding oxidative stress induced by spirotetramat in aquatic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2014.04.016 | DOI Listing |
Toxicol Res (Camb)
February 2025
Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Synthetic cathinones (SCs), a group of new psychoactive substances (NPS), are designer molecules with hallucinogenic and psychostimulatory effects. Although the structural similarities of SCs to amphetamines suggest that they may have similar toxicity profiles to those of amphetamine congeners, little is known about SCs from a toxicological point of view. In the present study, the toxicity profiles of commonly encountered SCs ( = 65), listed in the 2020 Report of the United Nations Office on Drugs and Crime (UNODC), were evaluated using in silico methods.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Rui Pu Agricultural Technology Co., Ltd., Hohhot, China.
Introduction: The control of parasites infections in livestock is an ongoing concern, with parasites developing resistance to commonly used antiparasitic drugs. The current study investigated the destructive effect of the fungus Pochonia chlamydosporia on the eggs and oocysts of several equine parasites, as well as assessing the safety of the fungus in mice.
Methods: , , Anoplocephala spp eggs and spp.
Cureus
December 2024
Psychology Department, Ministry of Defence, Riyadh, SAU.
Nutmeg and mace are commonly known for their medicinal and culinary properties. The chemical compounds found in nutmeg and mace, notably myristicin, elemicin, and safrole, have been implicated in the psychoactive and anticholinergic effects that are the result of acute toxicity. Cases of mace toxicity are not as commonly reported as nutmeg toxicity.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
ARCHE Consulting, Ghent, Belgium.
This study aimed to develop a bioavailability-based effects assessment method for nickel (Ni) to derive acute freshwater environmental thresholds in Europe. The authors established a reliable acute freshwater Ni ecotoxicity database covering 63 different freshwater species, and the existing acute Ni bioavailability models for invertebrates were revised. A single average invertebrate bioavailability model was proposed, in which the protective effects of Ca2+ and Mg2+ on Ni2+ toxicity were integrated as a single-site competition effect at the Ni biotic ligand.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Basic Sciences, Faculty of Allied Health Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
Background: Dermatophytes, the primary causative agents of superficial cutaneous fungal infections in humans, present a significant therapeutic challenge owing to the increasing prevalence of recurrent infections and the emergence of antifungal resistance. To address this critical gap, this study was designed to investigate the antifungal potential of 3-benzylideneindolin-2-one against dermatophytes and assess its in vivo toxicological profile using brine shrimp and zebrafish embryo models.
Methods: The antifungal activity of 3-benzylideneindolin-2-one was evaluated against 30 clinical isolates of dermatophyte species, including Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Microsporum canis, and Epidermophyton floccosum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using the broth microdilution method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!