This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the nanoparticles then quickly phase separate the nanoparticles from the aqueous based suspension and confine them to the air-fluid interface. This drives the ligand-capped nanoparticles to form monolayer domains at the air-fluid interface. The use of water-miscible organic solvents is important as it enables the transport of the nanoparticles from the interface onto template-free substrates. The flow is mediated by a surface tension gradient and creates macroscopic, high-density, monolayer nanoparticle-ligand films. This self-assembly technique may be generalized to include the use of particles of different compositions, size, and shape and may lead to an efficient assembly method to produce low-cost, macroscopic, high-density, monolayer nanoparticle films for wide-spread applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174043PMC
http://dx.doi.org/10.3791/51282DOI Listing

Publication Analysis

Top Keywords

monolayer films
8
template-free substrates
8
self-assembly technique
8
air-fluid interface
8
macroscopic high-density
8
high-density monolayer
8
nanoparticles
6
monolayer
5
technique
4
technique functionalize
4

Similar Publications

Anchorable Polymers Enabling Ultra-Thin and Robust Hole-Transporting Layers for High-Efficiency Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.

Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).

View Article and Find Full Text PDF

This study reports the synthesis of plasmonic hot nanogap networks-in-triangular nanoframes (NITNFs), featuring narrow intraparticle nanogap networks embedded within triangular nanoframes. Starting from Au nanotriangles, Pt NITNFs are synthesized through a cascade reaction involving simultaneous Pt deposition and Au etching in a one-pot process. The Pt NITNFs are then transformed into plasmonically active Au NITNFs via Au coating.

View Article and Find Full Text PDF

Tripodal Triptycenes as a Versatile Building Block for Highly Ordered Molecular Films and Self-Assembled Monolayers.

Acc Chem Res

January 2025

Laboratory for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.

ConspectusThe design of properties and functions of molecular assemblies requires not only a proper choice of building blocks but also control over their packing arrangements. A highly versatile unit in this context is a particular type of triptycene with substituents at the 1,8,13-positions, called tripodal triptycene, which offers predictable molecular packing and multiple functionalization sites, both at the opposite 4,5,16- or 10 (bridgehead)-positions. These triptycene building blocks are capable of two-dimensional (2D) nested hexagonal packing, leading to the formation of 2D sheets, which undergo one-dimensional (1D) stacking into well-defined "2D+1D" structures.

View Article and Find Full Text PDF

Post-Treatment of Monolayer MoS Field-Effect Transistors with HO Vapor: Alleviation of Remote Channel Doping.

ACS Appl Mater Interfaces

January 2025

School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Atomic layer deposition (ALD) of high-k dielectric films on MoS channels can lead to inadvertent remote electron doping of channels owing to nonequilibrium ALD conditions, such as the low temperatures and short purge times required for pinhole-free coating, as well as the weak physical adsorption of ALD precursors on MoS. In this study, we propose the application of a simple and effective HO vapor post-treatment (HO PT) at 100 °C immediately after complete integration of bottom- and top-gate monolayer MoS field-effect transistors (FETs), to address the inadvertent channel doping effect. When HO PT was applied to bottom-gate monolayer MoS FETs with an ALD-AlO passivation layer, the mitigation of channel doping was confirmed through electrical and optical measurements.

View Article and Find Full Text PDF

The reduced dimensionality of thin transition metal dihalide films on single-crystal surfaces unlocks a diverse range of magnetic and electronic properties. However, achieving stoichiometric monolayer islands requires precise control over the growth conditions. In this study, we employ scanning probe microscopy to investigate the growth of MnI on Ag(111) via single-crucible evaporation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!