Highly efficient In2O3-Co3O4 catalysts were prepared for ultralow-temperature CO oxidation by simultaneously tuning the CO adsorption strength and oxygen activation over a Co3O4 surface, which could completely convert CO to CO2 at temperatures as low as -105 °C compared to -40 °C over pure Co3O4, with enhanced stability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc00036fDOI Listing

Publication Analysis

Top Keywords

ultralow-temperature oxidation
8
adsorption strength
8
strength oxygen
8
oxygen activation
8
oxidation in2o3-co3o4
4
in2o3-co3o4 catalyst
4
catalyst strategy
4
strategy tune
4
tune adsorption
4
activation simultaneously
4

Similar Publications

Conductive hydrogel is considered to be one of the most potential sensing materials for wearable strain sensors. However, both the hydrophilicity of polymer chains and high water content severely inhibit the potential applications of hydrogel-based sensors in extreme conditions. In this study, a multicross-linked hydrogel was prepared by simultaneously introducing a double-network matrix, multiple conductive fillers, and free-moving ions, which can withstand an ultralow temperature below -80 °C.

View Article and Find Full Text PDF

Assembling Fe single-molecule magnets on a TiO monolayer.

Nanoscale

August 2024

Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.

The decoration of technologically relevant surfaces, such as metal oxides, with Single-Molecule Magnets (SMMs) constitutes a persistent challenge for the integration of these molecular systems into novel technologies and, in particular, for the development of spintronic and quantum devices. We used UHV thermal sublimation to deposit tetrairon(III) propeller-shaped SMMs (Fe) as a single layer on a TiO ultrathin film grown on Cu(001). The properties of the molecular deposit were studied using a multi-technique approach based on standard topographic and spectroscopic measurements, which demonstrated that molecules remain largely intact upon deposition.

View Article and Find Full Text PDF

Freezing is a crucial step in the process of frozen foods. In this study, the effects of different freezing methods, including liquid nitrogen immersion freezing (LF), quick-freezing machine freezing (QF), packaging immersion freezing (PF), and ultralow temperature refrigerator freezing (UF), and freezing time (0, 15, 30, and 60 days) on the textural properties, dynamic rheological properties, water distribution, and structure of dough and the quality of end steamed bread were evaluated. Freezing resulted in a decline in the physicochemical properties of dough.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers address the challenges of operating rechargeable batteries at ultralow temperatures, highlighting poor kinetics of the electrodes.
  • They introduce a novel organic electrode made from disodium rhodizonate and graphene oxide, achieving impressive performance with a capacity of 130 mAh g at -50 °C.
  • The full-cell design, using Prussian blue analogues, shows remarkable cycling stability over 7000 cycles at -40 °C, maintaining effective power supply even in extreme cold.
View Article and Find Full Text PDF

Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!