A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controllable growth of CNTs on graphene as high-performance electrode material for supercapacitors. | LitMetric

Controllable growth of CNTs on graphene as high-performance electrode material for supercapacitors.

ACS Appl Mater Interfaces

Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.

Published: June 2014

Design and synthesis of three-dimensional (3D) structured carbon materials are crucial for achieving high-performance supercapacitors (SC) for energy storage. Here, we report the preparation of 3D architectured GN-CNT hybrid as SC electrodes. Controllable growth of carbon nanotubes on graphene sheets was realized through a facile one-pot pyrolysis strategy. The length of the carbon nanotubes could be rationally tuned by adjusting the amount of precursors. Correspondingly, the resulted GN-CNT hybrid showed adjustable electrochemical performance as an SC electrode. Importantly, the GN-CNT exhibited a high specific surface area of 903 m(2) g(-1) and maximum specific capacitance of 413 F g(-1) as SC electrodes at a scan rate of 5 mV s(-1) in 6 M KOH aqueous solution. This work paves a feasible pathway to prepare carbon electrode materials with favorable 3D architecture and high performance, for use in energy storage and conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am501362gDOI Listing

Publication Analysis

Top Keywords

controllable growth
8
energy storage
8
gn-cnt hybrid
8
carbon nanotubes
8
growth cnts
4
cnts graphene
4
graphene high-performance
4
high-performance electrode
4
electrode material
4
material supercapacitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!