Root hair formation is controlled by environmental signals. We found significantly increased Arabidopsis root hair density and length in response to low-dose vanadate (V). Reactive oxygen species (ROS) production was induced with V treatment. We investigated the possible role of NADPH oxidase in altering root system architecture induced by V by using diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, and an NADPH oxidase mutant (rhd2/AtrbohC). NADPH oxidase was involved in root hair elongation induced by V. As well, ethylene receptor (ETR1) and ROOT HAIR DEFECTIVE (RHD6) participated in inducing root hair formation induced by V. Furthermore, the kinase inhibitors, genistein (tyrosine kinase inhibitor) and K252a (ser/thr kinase inhibitor), and a phosphatase inhibitor, cantharidin (ser/thr phosphatase inhibitor), suppressed root hair formation induced by V. To elucidate the regulation of gene expression in response to V, we investigated transcriptional changes in roots by microarray assay. Exposure to V triggered changes in transcript levels of genes related to cell wall formation, ROS activity and signaling. Several genes involved in root hair formation were also regulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.12229 | DOI Listing |
J Physiol
January 2025
School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.
C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China.
Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca to establish and maintain a sharp cytosolic Ca gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
College of Life Sciences, Liaoning Normal University, Dalian 116000, Liaoning Province, China.
Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.
View Article and Find Full Text PDFSci Rep
January 2025
Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany.
The hairiness of the leaves is an essential morphological feature within the genus Vitis that can serve as a physical barrier. A high leaf hair density present on the abaxial surface of the grapevine leaves influences their wettability by repelling forces, thus preventing pathogen attack such as downy mildew and anthracnose. Moreover, leaf hairs as a favorable habitat may considerably affect the abundance of biological control agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!